Introduction to Business


Book Description

Introduction to Business covers the scope and sequence of most introductory business courses. The book provides detailed explanations in the context of core themes such as customer satisfaction, ethics, entrepreneurship, global business, and managing change. Introduction to Business includes hundreds of current business examples from a range of industries and geographic locations, which feature a variety of individuals. The outcome is a balanced approach to the theory and application of business concepts, with attention to the knowledge and skills necessary for student success in this course and beyond. This is an adaptation of Introduction to Business by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.




Introduction to Theory of Control in Organizations


Book Description

Introduction to Theory of Control in Organizations explains how methodologies from systems analysis and control theory, including game and graph theory, can be applied to improve organizational management. The theory presented extends the traditional approach to management science by introducing the optimization and game-theoretical tools required




Introduction to Feedback Control


Book Description

For undergraduate courses in control theory at the junior or senior level. Introduction to Feedback Control, First Edition updates classical control theory by integrating modern optimal and robust control theory using both classical and modern computational tools. This text is ideal for anyone looking for an up-to-date book on Feedback Control. Although there are many textbooks on this subject, authors Li Qiu and Kemin Zhou provide a contemporary view of control theory that includes the development of modern optimal and robust control theory over the past 30 years. A significant portion of well-known classical control theory is maintained, but with consideration of recent developments and available modern computational tools.




Introduction to Feedback Control Theory


Book Description

There are many feedback control books out there, but none of them capture the essence of robust control as well as Introduction to Feedback Control Theory. Written by Hitay Özbay, one of the top researchers in robust control in the world, this book fills the gap between introductory feedback control texts and advanced robust control texts. Introduction to Feedback Control Theory covers basic concepts such as dynamical systems modeling, performance objectives, the Routh-Hurwitz test, root locus, Nyquist criterion, and lead-lag controllers. It introduces more advanced topics including Kharitanov's stability test, basic loopshaping, stability robustness, sensitivity minimization, time delay systems, H-infinity control, and parameterization of all stabilizing controllers for single input single output stable plants. This range of topics gives students insight into the key issues involved in designing a controller. Occupying and important place in the field of control theory, Introduction to Feedback Control Theory covers the basics of robust control and incorporates new techniques for time delay systems, as well as classical and modern control. Students can use this as a text for building a foundation of knowledge and as a reference for advanced information and up-to-date techniques







Introduction to Process Control


Book Description

Introduction to Process Control, Third Edition continues to provide a bridge between traditional and modern views of process control by blending conventional topics with a broader perspective of integrated process operation, control, and information systems. Updated and expanded throughout, this third edition addresses issues highly relevant to today’s teaching of process control: Discusses smart manufacturing, new data preprocessing techniques, and machine learning and artificial intelligence concepts that are part of current smart manufacturing decisions Includes extensive references to guide the reader to the resources needed to solve modeling, classification, and monitoring problems Introduces the link between process optimization and process control (optimizing control), including the effect of disturbances on the optimal plant operation, the concepts of steady-state and dynamic back-off as ways to quantify the economic benefits of control, and how to determine an optimal transition policy during a planned production change Incorporates an introduction to the modern architectures of industrial computer control systems with real case studies and applications to pilot-scale operations Analyzes the expanded role of process control in modern manufacturing, including model-centric technologies and integrated control systems Integrates data processing/reconciliation and intelligent monitoring in the overall control system architecture Drawing on the authors’ combined 60 years of teaching experiences, this classroom-tested text is designed for chemical engineering students but is also suitable for industrial practitioners who need to understand key concepts of process control and how to implement them. The text offers a comprehensive pedagogical approach to reinforce learning and presents a concept first followed by an example, allowing students to grasp theoretical concepts in a practical manner and uses the same problem in each chapter, culminating in a complete control design strategy. A vast number of exercises throughout ensure readers are supported in their learning and comprehension. Downloadable MATLAB® toolboxes for process control education as well as the main simulation examples from the book offer a user-friendly software environment for interactively studying the examples in the text. These can be downloaded from the publisher’s website. Solutions manual is available for qualifying professors from the publisher.




Introduction to Control Systems


Book Description

This book is written for use as a text in an introductory course in control systems. The classical as well as the state space approach is included and integrated as much as possible. The first part of the book deals with analysis in the time domain. All the graphical techniques are presented in one chapter and the latter part of the book deals with some advanced material. It is intended that the student should already be familiar with Laplace transformations and have had an introductory course in circuit analysis or vibration theory. To provide the student with an understanding of correlation concepts in control theory, a new chapter dealing with stochastic inputs has been added. Also Appendix\A has been significantly expanded to cover the theory of Laplace transforms and z-transforms. The book includes worked examples and problems for solution and an extensive bibliography as a guide for further reading.




Control System Design


Book Description

Introduction to state-space methods covers feedback control; state-space representation of dynamic systems and dynamics of linear systems; frequency-domain analysis; controllability and observability; shaping the dynamic response; more. 1986 edition.




Optimal Control Theory


Book Description

Upper-level undergraduate text introduces aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization. Numerous figures, tables. Solution guide available upon request. 1970 edition.




Introduction to Feedback Control


Book Description

This survey of input/output controller design is aimed at a mathematical audience. The text provides a rigorous introduction to input/output controller design for linear systems.