Introduction to Discrete Mathematics with ISETL


Book Description

Intended for first- or second-year undergraduates, this introduction to discrete mathematics covers the usual topics of such a course, but applies constructivist principles that promote - indeed, require - active participation by the student. Working with the programming language ISETL, whose syntax is close to that of standard mathematical language, the student constructs the concepts in her or his mind as a result of constructing them on the computer in the syntax of ISETL. This dramatically different approach allows students to attempt to discover concepts in a "Socratic" dialog with the computer. The discussion avoids the formal "definition-theorem" approach and promotes active involvement by the reader by its questioning style. An instructor using this text can expect a lively class whose students develop a deep conceptual understanding rather than simply manipulative skills. Topics covered in this book include: the propositional calculus, operations on sets, basic counting methods, predicate calculus, relations, graphs, functions, and mathematical induction.




Learning Discrete Mathematics with ISETL


Book Description

The title of this book, Learning Discrete Mathematics with ISETL raises two issues. We have chosen the word "Learning" rather than "Teaching" because we think that what the student does in order to learn is much more important than what the professor does in order to teach. Academia is filled with outstanding mathematics teachers: excellent expositors, good organizers, hard workers, men and women who have a deep understanding of Mathematics and its applications. Yet, when it comes to ideas in Mathe matics, our students do not seem to be learning. It may be that something more is needed and we have tried to construct a book that might provide a different kind of help to the student in acquiring some of the fundamental concepts of Mathematics. In a number of ways we have made choices that seem to us to be the best for learning, even if they don't always completely agree with standard teaching practice. A second issue concerns students' writing programs. ISETL is a pro gramming language and by the phrase "with ISETL" in the title, we mean that our intention is for students to write code, think about what they have written, predict its results, and run their programs to check their predic tions. There is a trade-off here. On the one hand, it can be argued that students' active involvement with constructing Mathematics for themselves and solving problems is essential to understanding concepts.




APOS Theory


Book Description

In spite of the fact that APOS Theory has been used extensively in numerous scholarly publications, in the design of textbooks, and in teaching practice, there is no single references that contains all the relevant information about its components, and provides guidance about its application. The goal of this book is to present the main elements of APOS theory. It should be useful for researchers who work with, or would like to learn more about, this theoretical approach, people who are interested in the way which mathematical conceptions are constructed according to this theory, Mathematics Education researchers, graduate students in Mathematics Education, and Mathematics instructors.




Advanced Educational Technologies for Mathematics and Science


Book Description

This book is the outgrowth of a NATO Advanced Research Workshop, held in Milton Keynes (United Kingdom) in the summer of 1990. The workshop brought together about 30 world leaders in the use of advanced technologies in the teaching of mathematics and science. Many of these participants commented that the workshop was one of the more productive and exciting workshops that they had attended. It was not uncommon to see participants engaged in informal discussion far into the evenings and early mornings, long after formal sessions had ended. It is my hope that this book captures the substance and excitement of many of the ideas that were presented at the workshop. Indeed, the process by which this book has come about has given every opportunity for the best thinking to get reflected here. Participants wrote papers prior to the workshop. After the workshop, participants revised the papers at least once. In a few instances, three versions of papers were written. Some participants could not resist the urge to incorporate descriptions of some of the newer developments in their projects. The papers in this book demonstrate how technology is impacting our view of what should be taught, what can be taught, and how we should go about teaching in the various disciplines. As such, they offer great insight into the central issues of teaching and learning in a wide range of disciplines and across many grade levels (ranging from elementary school through undergraduate college education).




How to Teach Mathematics


Book Description

This third edition is a lively and provocative tract on how to teach mathematics in today's new world of online learning tools and innovative teaching devices. The author guides the reader through the joys and pitfalls of interacting with modern undergraduates--telling you very explicitly what to do and what not to do. This third edition has been streamlined from the second edition, but still includes the nuts and bolts of good teaching, discussing material related to new developments in teaching methodology and technique, as well as adding an entire new chapter on online teaching methods.







Discrete Mathematics in the Schools


Book Description

This book provides teachers of all levels with a great deal of valuable material to help them introduce discrete mathematics into their classrooms.




College Geometry with GeoGebra


Book Description

From two authors who embrace technology in the classroom and value the role of collaborative learning comes College Geometry Using GeoGebra, a book that is ideal for geometry courses for both mathematics and math education majors. The book's discovery-based approach guides students to explore geometric worlds through computer-based activities, enabling students to make observations, develop conjectures, and write mathematical proofs. This unique textbook helps students understand the underlying concepts of geometry while learning to use GeoGebra software—constructing various geometric figures and investigating their properties, relationships, and interactions. The text allows students to gradually build upon their knowledge as they move from fundamental concepts of circle and triangle geometry to more advanced topics such as isometries and matrices, symmetry in the plane, and hyperbolic and projective geometry. Emphasizing active collaborative learning, the text contains numerous fully-integrated computer lab activities that visualize difficult geometric concepts and facilitate both small-group and whole-class discussions. Each chapter begins with engaging activities that draw students into the subject matter, followed by detailed discussions that solidify the student conjectures made in the activities and exercises that test comprehension of the material. Written to support students and instructors in active-learning classrooms that incorporate computer technology, College Geometry with GeoGebra is an ideal resource for geometry courses for both mathematics and math education majors.




Set Theory for Computing


Book Description

An up-to-date and comprehensive account of set-oriented symbolic manipulation and automated reasoning methods. This book is of interest to graduates and researchers in theoretical computer science and computational logic and automated reasoning.




The Future of the Teaching and Learning of Algebra


Book Description

Kaye Stacey‚ Helen Chick‚ and Margaret Kendal The University of Melbourne‚ Australia Abstract: This section reports on the organisation‚ procedures‚ and publications of the ICMI Study‚ The Future of the Teaching and Learning of Algebra. Key words: Study Conference‚ organisation‚ procedures‚ publications The International Commission on Mathematical Instruction (ICMI) has‚ since the 1980s‚ conducted a series of studies into topics of particular significance to the theory and practice of contemporary mathematics education. Each ICMI Study involves an international seminar‚ the “Study Conference”‚ and culminates in a published volume intended to promote and assist discussion and action at the international‚ national‚ regional‚ and institutional levels. The ICMI Study running from 2000 to 2004 was on The Future of the Teaching and Learning of Algebra‚ and its Study Conference was held at The University of Melbourne‚ Australia fromDecember to 2001. It was the first study held in the Southern Hemisphere. There are several reasons why the future of the teaching and learning of algebra was a timely focus at the beginning of the twenty first century. The strong research base developed over recent decades enabled us to take stock of what has been achieved and also to look forward to what should be done and what might be achieved in the future. In addition‚ trends evident over recent years have intensified. Those particularly affecting school mathematics are the “massification” of education—continuing in some countries whilst beginning in others—and the advance of technology.