Introduction to Electron and Ion Optics


Book Description

Introduction to Electron and Ion Optics provides the theoretical background needed to understand the subject matter and even be helpful in laboratory works. Seven major parts comprise the book where each focuses on a certain aspect or field. The book begins with an introduction to the general principles about electron and ion optics, specifically as basis for the design of the optical components used in particle analyzers and accelerators. The following parts tackle different aspects such as geometrical optics; scaling rules and dispersion coefficients; fields (paraxial, sector, fringing, quadrupole); lenses (electrostatic, immersion, unipotential, etc.); analyzers (electrostatic, spherical, etc.); and space charge and beam production. Towards the last part of the book, there is an exercises section where various problems are given for the reader to answer. This book caters to students specifically in the field of physics.




Electron and Ion Optics


Book Description

The field of electron and ion optics is based on the analogy between geometrical light optics and the motion of charged particles in electromagnetic fields. The spectacular development of the electron microscope clearly shows the possibilities of image formation by charged particles of wavelength much shorter than that of visible light. As new applications such as particle accelerators, cathode ray tubes, mass and energy spectrometers, microwave tubes, scanning-type analytical instruments, heavy beam technologies, etc. emerged, the scope of particle beam optics has been exten ded to the formation of fine probes. The goal is to concentrate as many particles as possible in as small a volume as possible. Fabrication of microcircuits is a good example of the growing importance of this field. The current trend is towards increased circuit complexity and pattern density. Because of the diffraction limitation of processes using optical photons and the technological difficulties connected with x-ray processes, charged particle beams are becoming popular. With them it is possible to write directly on a wafer under computer control, without using a mask. Focused ion beams offer especially great possibilities in the submicron region. Therefore, electron and ion beam technologies will most probably playa very important role in the next twenty years or so.




Aberration Theory in Electron and Ion Optics


Book Description

Advances in Imaging and Electron Physics, Volume 227 in the Advances in Imaging and Electron Physics series, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Advances in Imaging and Electron Physics series







Principles of Electron Optics


Book Description

The three volumes in the PRINCIPLES OF ELECTRON OPTICS Series constitute the first comprehensive treatment of electron optics in over forty years. While Volumes 1 and 2 are devoted to geometrical optics, Volume 3 is concerned with wave optics and effects due to wave length. Subjects covered include: Derivation of the laws of electron propagation from SchrUdinger's equation Image formation and the notion of resolution The interaction between specimens and electrons Image processing Electron holography and interference Coherence, brightness, and the spectral function Together, these works comprise a unique and informative treatment of the subject. Volume 3, like its predecessors, will provide readers with both a textbook and an invaluable reference source.










Applied Charged Particle Optics


Book Description

Written by a pioneer in the field, this overview of charged particle optics provides a solid introduction to the subject area for all physicists wishing to design their own apparatus or better understand the instruments with which they work. It begins by introducing electrostatic lenses and fields used for acceleration, focusing and deflection of ions or electrons. Subsequent chapters give detailed descriptions of electrostatic deflection elements, uniform and non-uniform magnetic sector fields, image aberrations, and, finally, fringe field confinement.