An Introduction To Quantum Field Theory


Book Description

An Introduction to Quantum Field Theory is a textbook intended for the graduate physics course covering relativistic quantum mechanics, quantum electrodynamics, and Feynman diagrams. The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.




Quantum Field Theory


Book Description

The rise of quantum electrodynamics (QED) made possible a number of excellent textbooks on quantum field theory in the 1960s. However, the rise of quantum chromodynamics (QCD) and the Standard Model has made it urgent to have a fully modern textbook for the 1990s and beyond. Building on the foundation of QED, Quantum Field Theory: A Modern Introduction presents a clear and comprehensive discussion of the gauge revolution and the theoretical and experimental evidence which makes the Standard Model the leading theory of subatomic phenomena. The book is divided into three parts: Part I, Fields and Renormalization, lays a solid foundation by presenting canonical quantization, Feynman rules and scattering matrices, and renormalization theory. Part II, Gauge Theory and the Standard Model, focuses on the Standard Model and discusses path integrals, gauge theory, spontaneous symmetry breaking, the renormalization group, and BPHZ quantization. Part III, Non-perturbative Methods and Unification, discusses more advanced methods which now form an essential part of field theory, such as critical phenomena, lattice gauge theory, instantons, supersymmetry, quantum gravity, supergravity, and superstrings.




Quantum Physics Workbook For Dummies


Book Description

Hands-on practice in solving quantum physics problems Quantum Physics is the study of the behavior of matter and energy at the molecular, atomic, nuclear, and even smaller microscopic levels. Like the other titles in our For Dummies Workbook series, Quantum Physics Workbook For Dummies allows you to hone your skills at solving the difficult and often confusing equations you encounter in this subject. Explains equations in easy-to-understand terms Harmonic Oscillator Operations, Angular Momentum, Spin, Scattering Theory Using a proven practice-and-review approach, Quantum Physics Workbook For Dummies is all you need to get up to speed in problem solving!




An Interpretive Introduction to Quantum Field Theory


Book Description

Quantum mechanics is a subject that has captured the imagination of a surprisingly broad range of thinkers, including many philosophers of science. Quantum field theory, however, is a subject that has been discussed mostly by physicists. This is the first book to present quantum field theory in a manner that makes it accessible to philosophers. Because it presents a lucid view of the theory and debates that surround the theory, An Interpretive Introduction to Quantum Field Theory will interest students of physics as well as students of philosophy. Paul Teller presents the basic ideas of quantum field theory in a way that is understandable to readers who are familiar with non-relativistic quantum mechanics. He provides information about the physics of the theory without calculational detail, and he enlightens readers on how to think about the theory physically. Along the way, he dismantles some popular myths and clarifies the novel ways in which quantum field theory is both a theory about fields and about particles. His goal is to raise questions about the philosophical implications of the theory and to offer some tentative interpretive views of his own. This provocative and thoughtful book challenges philosophers to extend their thinking beyond the realm of quantum mechanics and it challenges physicists to consider the philosophical issues that their explorations have encouraged.




Statistical Field Theory


Book Description

A thorough and pedagogical introduction to phase transitions and exactly solved models in statistical physics and quantum field theory.




Introduction to Classical and Quantum Field Theory


Book Description

This is the first introductory textbook on quantum field theory to be written from the point of view of condensed matter physics. As such, it presents the basic concepts and techniques of statistical field theory, clearly explaining how and why they are integrated into modern (and classical) field theory, and includes the latest developments. Written by an expert in the field, with a broad experience in teaching and training, it manages to present such substantial topics as phases and phase transitions or solitons and instantons in an accessible and concise way. Divided into two parts, the first covers fundamental physics and the mathematics background needed by students in order to enter the field, while the second part discusses applications of quantum field theory to a few basic problems. The emphasis here lies on how modern concepts of quantum field theory are embedded in these approaches, and also on the limitations of standard quantum field theory techniques in facing 'real' physics problems. Throughout, there are numerous end-of-chapter problems, and a free solutions manual is available for lecturers.




Modern Quantum Field Theory


Book Description

Presenting a variety of topics that are only briefly touched on in other texts, this book provides a thorough introduction to the techniques of field theory. Covering Feynman diagrams and path integrals, the author emphasizes the path integral approach, the Wilsonian approach to renormalization, and the physics of non-abelian gauge theory. It provides a thorough treatment of quark confinement and chiral symmetry breaking, topics not usually covered in other texts at this level. The Standard Model of particle physics is discussed in detail. Connections with condensed matter physics are explored, and there is a brief, but detailed, treatment of non-perturbative semi-classical methods. Ideal for graduate students in high energy physics and condensed matter physics, the book contains many problems,which help students practise the key techniques of quantum field theory.




Introduction to Field Theory


Book Description

Acclaimed by American Mathematical Monthly as "an excellent introduction,"this treatment ranges from basic definitions to important results and applications, introducing both the spirit and techniques of abstract algebra. It develops the elementary properties of rings and fields, explores extension fields and Galois theory, and examines numerous applications. 1982 edition.




Introduction to Effective Field Theory


Book Description

This advanced, accessible textbook on effective field theories uses worked examples to bring this important topic to a wider audience.




Relativistic Quantum Mechanics and Introduction to Field Theory


Book Description

This advanced textbook supplies graduate students with a primer in quantum theory. A variety of processes are discussed with concepts such as potentials, classical current distributions, prescribed external fields dealt with in the framework of relativistic quantum mechanics. Then, in an introduction to field theory, the author emphasizes the deduction of the said potentials or currents. A modern presentation of the subject together with many exercises, unique in its unusual underlying concept of combining relativistic quantum mechanics with basic quantum field theory.