Introduction to Geometrical Optics


Book Description

This book is the culmination of twenty-five years of teaching Geometrical Optics. The volume is organised such that the single spherical refracting surface is the basic optical element. Spherical mirrors are treated as special cases of refraction, with the same applicable equations. Thin lens equations follow as combinations of spherical refracting surfaces while the cardinal points of the thick lens make it equivalent to a thin lens. Ultimately, one set of vergence equations are applicable to all these elements.The chapters are devoted to in-depth treatments of stops, pupils and ports; magnifiers, microscopes, telescopes, and camera lenses; ophthalmic instruments; resolving power and MTF; trigonometric ray tracing; and chromatic and monochromatic aberrations. There are over 100 worked examples, 400 homework problems and 400 illustrations.First published in 1994 by Penumbra Publishing Co.




Modern Geometrical Optics


Book Description

From basic terms and concepts to advanced optimization techniques-a complete, practical introduction to modern geometrical optics Most books on geometrical optics present only matrix methods. Modern Geometrical Optics, although it covers matrix methods, emphasizes y-nu ray tracing methods, which are used most commonly by optical engineers and are easier to adapt to third-order optics and y-??? diagrams. Moving by logical degrees from fundamental principles to advanced optical analysis and design methods, this book bridges the gap between the optical theory taught in introductory physics texts and advanced books on lens design. Providing the background material needed to understand advanced material, it covers important topics such as field of view, stops, pupils and windows, exact ray tracing, image quality, and optimization of the image. Important features of Modern Geometrical Optics include: * Examples of all important techniques presented * Extensive problem sets in each chapter * Optical analysis and design software * Chapters covering y-??? diagrams, optimization, and lens design This book is both a primer for professionals called upon to design optical systems and an ideal text for courses in modern geometrical optics. Companion Software Special lens design and analysis software capable of solving all problems presented in the book is available via Wiley's FTP site. This software also serves as an introduction to the use of commercial lens design software. Appendix C is a user's manual for the software.




Fundamentals of Geometrical Optics


Book Description

Optical imaging starts with geometrical optics, and ray tracing lies at its forefront. This book starts with Fermat’s principle and derives the three laws of geometrical optics from it. After discussing imaging by refracting and reflecting systems, paraxial ray tracing is used to determine the size of imaging elements and obscuration in mirror systems. Stops, pupils, radiometry, and optical instruments are also discussed. The chromatic and monochromatic aberrations are addressed in detail, followed by spot sizes and spot diagrams of aberrated images of point objects. Each chapter ends with a summary and a set of problems. The book ends with an epilogue that summarizes the imaging process and outlines the next steps within and beyond geometrical optics.




The Geometrical Optics Workbook


Book Description

This workbook is designed to supplement optics textbooks and covers all the traditional topics of geometrical optics. Terms, equations, definitions, and concepts are discussed briefly and explained through a series of problems that are worked out in a step-by-step manner which simplifies the problem-solving process. Additional practice problems are provided at the end of each chapter.* - An indispensable tool when studying for the state and National Boards * - An ideal supplement to optics textbooks * - Covers the traditional topics of geometrical optics.




Field Guide to Geometrical Optics


Book Description

This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.




Geometrical Optics


Book Description

It is by no means easy for the applied mathematician to decide how much importance he should attach to the more abstract and aesthetic side of his work ... To all appearances, Sir William Rowan Hamilton (1850-1865) attached little importance to the practical applications of his method, and it was only with the publication of his Mathematical Papers that it was possible to form a more correct and balanced judgement of Hamilton as an applied mathematician.




A Practical Guide to Experimental Geometrical Optics


Book Description

A concise, yet deep introduction to geometrical optics, developing the practical skills and research techniques routinely used in modern laboratories. Suitable for both students and self-learners, this accessible text teaches readers how to build their own optical laboratory, and design and perform optical experiments.




An Introduction to Hamiltonian Optics


Book Description

Accessible study provides detailed account of the Hamiltonian treatment of aberration theory in geometrical optics. Many classes of optical systems defined in terms of their symmetries. Detailed solutions. 1970 edition.




Geometrical Optics in Engineering Physics


Book Description

This monograph provides concise and clear coverage of modern ray theory without the need of complicated mathematics. Comprehensive coverage is given to wave problems in engineering physics, considering rays and caustics as physical objects.




Introduction to Optics


Book Description

The book introduces university undergraduates to the fascinating world of the science of light. Contemporary physics programmes are under increasing pressure to provide a balance between coverage of several traditional branches of physics and to expose students to emerging research areas. It is therefore important to provide an in depth introduction to some branches of physics, such as optics, to students who may not become professional physicists but will need physics in their chosen professions. Some Universities offer optics as semester courses while others offer it as modules within general physics courses in the degree programme. The book meets the needs of both approaches. Optics has three major branches: Geometrical optics, Physical optics and Quantum optics. Chapter 1 is about the nature of light. Geometrical optics is covered in chapters 2 to 5, Physical optics in chapters 6 to 8, and Quantum optics in chapter 9, and lays a foundation for advanced courses in applied quantum optics. The language of physics is universal, and the book is suited to students globally. However, the book recognises certain peculiarities in Africa, and is written to meet the specific needs of students in African Universities. Some students come from well equipped schools while other students come from less well equipped schools. These two groups of students attending the same course have different needs. The well prepared students need challenge, while the others need to be taught in fair detail. The book has therefore detailed discussions and explanations of difficult-to-grasp topics with the help of simple but clearly drawn and labeled diagrams. The discussions and conclusions are presented pointwise, and key words, definitions, laws, etc., are highlighted. There are a large number of problems and exercises at the end of each chapter.