Introduction to Numerical Methods for Water Resources


Book Description

Numerical methods provide a powerful and essential tool for the solution of problems of water resources. This book gives an elementary introduction to the various methods in current use and demonstrates that different methods work well in different situations and some problems requirecombinations of methods. It is essential to know something of all of them in order to make a reasoned judgement of current practice. Their applications are discussed and more specialised versions are outlined along with many references making this an invaluable, comprehensive coverage of thefield.










Efficient Numerical Methods and Information-Processing Techniques for Modeling Hydro- and Environmental Systems


Book Description

Numerical simulation models have become indispensable in hydro- and environmental sciences and engineering. This monograph presents a general introduction to numerical simulation in environment water, based on the solution of the equations for groundwater flow and transport processes, for multiphase and multicomponent flow and transport processes in the subsurface as well as for flow and transport processes in surface waters. It displays in detail the state of the art of discretization and stabilization methods (e.g. finite-difference, finite-element, and finite-volume methods), parallel methods, and adaptive methods as well as fast solvers, with particular focus on explaining the interactions of the different methods. The book gives a brief overview of various information-processing techniques and demonstrates the interactions of the numerical methods with the information-processing techniques, in order to achieve efficient numerical simulations for a wide range of applications in environment water.




Computational Methods in Water Resources X


Book Description

This two-volume work constitutes the edited proceedings of the Tenth International Conference on Computational Methods in Water Resources (formerly Finite Elements in Water Resources), held at Heidelberg University, Germany in July 1994, organized jointly by Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (Interdisciplinary Center for Scientific Computing) and Sonderforschungsbereich 359 of Heidelberg University and the Institute of Supercomputing and Applied Mathematics of IBM Heidelberg. The 1994 proceedings present the work of authors from 23 countries. Numerical methods, mathematical modeling and applications to subsurface and surface hydrology are covered by a wide variety of papers. Issues of formation description and modeling, including parameter estimation, heterogeneity, and scaling up continue to attract the attention of a large number of researchers. Several papers edited in this book concern the solution of the Navier--Stokes equations. For applied mathematicians, engineers and geoscientists working in the fields of numerical methods, hydrology, ecology, water resources planning and management, remediation design, porous media research, petroleum engineering and coastal engineering.







Introduction to the Numerical Modeling of Groundwater and Geothermal Systems


Book Description

This book provides an introduction to the scientific fundamentals of groundwater and geothermal systems. In a simple and didactic manner the different water and energy problems existing in deformable porous rocks are explained as well as the corresponding theories and the mathematical and numerical tools that lead to modeling and solving them. This




Computational Methods in Water Resources


Book Description

These volumes contain the proceedings of CMWR2002, which was hosted by the Faculty of Civil Engineering & Geosciences at Delft University of Technology. The interest in this meeting was truly overwhelming: around 230 papers from leading scientists were submitted and accepted for publication in the proceedings. The actual scope of the meeting was much broader than the title "Computational Methods in Water Resources" might suggest. Not only traditional hydrological topics like surface water and groundwater hydrology were covered, but also modern topics like coupled reactive transport, multiphase flow, pore-scale network modeling, remediation techniques, optimization, groundwater-surface water interactions and data assimilation. A quick glance through the Table of Contents of these two volumes immediately shows the richness of the material presented during the four days of the conference. New conceptual models, experimental methods, upscaling techniques and parameter estimation procedures were introduced. Nevertheless, the emphasis was still on the development of new accurate and robust computational techniques.