Introduction to Physical Oceanography


Book Description

For decades, previous editions of John Knauss’s seminal work have struck a balance between purely descriptive texts and mathematically rigorous ones, giving a wide range of marine scientists access to the fundamental principles of physical oceanography. Newell Garfield continues this tradition, delivering valuable updates that highlight the book’s resourceful presentation and concise effectiveness. The authors include historical and current research, along with a 12-page color insert, to illuminate their perspective that the world ocean is tumultuous and continually helps to shape global environmental processes. The Third Edition builds a solid foundation that readers will find straightforward and lucid. It presents valuable insight into our understanding of the world ocean by: • Encompassing essential oceanic processes such as the transfer of heat across the ocean surface, the distribution of temperature and salinity, and the effect of the earth’s rotation on the ocean. • Providing sensible and well-defined explanations of the roles played by a stratified ocean, global balances, and equations of motion. • Discussing cogent topics such as major currents, tides, waves, coastal oceans, semienclosed seas, and sound and optics.




How the Ocean Works


Book Description

The world's oceans account for roughly 71 percent of the planet's surface and 99 percent of its livable volume. Any study of this huge habitat requires a solid foundation in the principles that underlie marine biology and physical and chemical oceanography, yet until now undergraduate textbooks have largely presented compilations of facts rather than explanations of principles. How the Ocean Works fills this gap, providing a concise and accessible college-level introduction to marine science that is also ideal for general readers. How are winds and currents driven? What is the dilemma of the two-layered ocean? Mark Denny explains key concepts like these in rich and fascinating detail. He explores early scientific knowledge of oceans, photosynthesis, trophic interactions and energy flow, and the impacts of human activities on marine and atmospheric systems. Focusing each chapter on a major topic and carefully explaining the principles and theory involved, Denny gives readers the conceptual building blocks needed to develop a coherent picture of the living ocean. How the Ocean Works is an indispensable resource that teaches readers how to think about the ocean--its biology, mechanics, and conservation. Provides a concise, up-to-date introduction to marine science Develops the conceptual basis needed to understand how the ocean works Explains fundamental principles and theory Includes color illustrations and informative diagrams Serves as a college textbook and a reference for general readers Some images inside the book are unavailable due to digital copyright restrictions.




Introduction to Physical Oceanography


Book Description

This book is written for college juniors and seniors and new graduate students in meteorology, ocean engineering, and oceanography. It begins with a brief overview of what is known about the ocean. This is followed by a description of the ocean basins, for the shape of the seas influences the physical processes in the water. Next, students will study the external forces, wind and heat, acting on the ocean, and the ocean's response. It also includes the equations describing dynamic response of the ocean. For example, the equations of motion, the influence of earth's rotation, and viscosity. Finally, students consider some particular examples: the deep circulation, the equatorial ocean and El NiE no, and the circulation of particular areas of the ocean. Contents: 1) A Voyage of Discovery. 2) The Historical Setting. 3) The Physical Setting. 4) Atmospheric Influences. 5) The Oceanic Heat Budget. 6) Temperature, Salinity and Density. 7) The Equations of Motion. 8) Equations of Motion with Viscosity. 9) Response of the Upper Ocean to Winds. 10) Geostrophic Currents. 11) Wind Driven Ocean Circulation. 12) Vorticity in the Ocean. 13) Deep Circulation in the Ocean. 14) Equatorial Processes. 15) Numerical Models. 16) Ocean Waves. 17) Coastal Processes and Tides."




Ocean Studies


Book Description

"The American Meteorological Society Education Program"--T.p. verso.




Introducing Oceanography


Book Description

Written by two leading oceanographers, Introducing Oceanography has rapidly established itself as a key introductory overview of its subject.




Oceanography and Marine Biology


Book Description

Oceanography and Marine Biology preserves the basic elements of the physical, chemical, and geological aspects of the marine sciences, and merges those fundamentals into a broader framework of marine biology and ecology. Existing textbooks on oceanography or marine biology address the companion field only cursorily: very few pages in oceanography texts are devoted to marine biology, and vice versa. This new book overcomes that imbalance, bringing these disparate marine science text formats closer together, giving them more equal weight, and introducing more effectively the physical sciences by showing students with everyday examples how such concepts form the foundation upon which to build a better understanding of the marine environment in a changing world. Lecturer supplements will also be available.




Introductory Dynamical Oceanography


Book Description

'Introductory Dynamical Oceanography' 2nd ed provides an introduction to Dynamical Physical Oceanography at a level suitable for senior year undergraduate students in the sciences and for graduate students entering oceanography. It aims to present the basic objectives, procedures and successes and to state some of the present limitations of dynamical oceanography and its relations to descriptive physical oceanography. The first edition has been thoroughly revised and updated and the new work includes reference to the Practical Salinity Scale 1978, the International Equation of State 1980 and the beta-spiral technique for calculating absolute currents from the density distribution. In addition the description of mixed-layer models has been updated and the chapters on Waves and on Tides have been substantially revised and enlarged, with emphasis on internal waves in the Waves chapter. While the text is self-contained readers are recommended to acquaint themselves with the general aspects of descriptive (synoptic) oceanography in order to be aware of the character of the ocean which the dynamical oceanographer is attempting to explain by referring to Pickard and Emery's 'Descriptive Physical Oceanography' 4th edition.




Introduction to satellite oceanography


Book Description

Satelli te oceanography, as the term is used in this book, is a generic term that means application of the technology of aerospace electromagnetic remote sensing to the study of the oceans. The key words here are "application of technology ••. to the study of the oceans." The goal is to learn more about our planet's hydrosphere. As such, remote sensing technology is another tool in the oceanographer's sea bag, just like a bathythermograph or a plankton net. But is a whole book necessary if remote sensing is just another tool? While it is true that no one has written a whole book on plankton nets, volumes have been written about what is found in those nets. Today's state-of-the-art measurements from spacecraft or aircraft first must be interpreted in terms of their physics; then the interpretations must be understood in terms of oceanic processes. This is not materially different from the analogy to Ii plankton net; marine biolo gists still argue about what didn't get caught in the net.




Oceanography


Book Description

This text presents a balanced geological, physical and biological coverage of the ocean using poetry, prose and outstanding photographs and illustrations to enhance the text. It includes new chapters on chemical and physical oceanography.




Introduction to the Physical and Biological Oceanography of Shelf Seas


Book Description

In this exciting and innovative textbook, two leading oceanographers bring together the fundamental physics and biology of the coastal ocean in a quantitative but accessible way for undergraduate and graduate students. Shelf sea processes are comprehensively explained from first principles using an integrated approach to oceanography that helps build a clear understanding of how shelf sea physics underpins key biological processes in these environmentally sensitive regions. Using many observational and model examples, worked problems and software tools, the authors explain the range of physical controls on primary biological production and shelf sea ecosystems. Boxes throughout the book present extra detail for each topic and non-mathematical summary points are provided for physics sections, allowing students to develop an intuitive understanding. The book is fully supported by extensive online materials, including worked solutions to end-of-chapter exercises, additional homework/exam problems with solutions and simple MATLAB and FORTRAN models for running simulations.