Introduction to OFDM Receiver Design and Simulation


Book Description

This practical book is an accessible introduction to Orthogonal frequency-division multiplexing (OFDM) receiver design, a technology that allows digitized data to be carried by multiple carriers. It offers a detailed simulation study of an OFDM algorithm for Wi-Fi and 4G cellular that can be used to understand other OFDM waveforms. Extensive simulation studies are included using the transmissionwaveform given by the IEEE 802.11 standard. Scrambler, error-correcting codes, interleaver and radio-wave propagation model are included. OFDM waveform characteristics, signal acquisition, synchronization issues, channel estimation and tracking, hard and soft decision decoding are all covered. Detailed derivations leading to the final formula for any algorithm are given, which allows the reader to clearly understand the approximations and conditions behind the formulas and apply them appropriately. The algorithms are selected not just for the best performance from simulation study but also for easy implementation. An example is a unique algorithm for signal acquisition using the principle of maximum likelihood detection.




OFDM Baseband Receiver Design for Wireless Communications


Book Description

Orthogonal frequency-division multiplexing (OFDM) access schemes are becoming more prevalent among cellular and wireless broadband systems, accelerating the need for smaller, more energy efficient receiver solutions. Up to now the majority of OFDM texts have dealt with signal processing aspects. To address the current gap in OFDM integrated circuit (IC) instruction, Chiueh and Tsai have produced this timely text on baseband design. OFDM Baseband Receiver Design for Wireless Communications covers the gamut of OFDM technology, from theories and algorithms to architectures and circuits. Chiueh and Tsai give a concise yet comprehensive look at digital communications fundamentals before explaining modulation and signal processing algorithms in OFDM receivers. Moreover, the authors give detailed treatment of hardware issues -- from design methodology to physical IC implementation. Closes the gap between OFDM theory and implementation Enables the reader to transfer communication receiver concepts into hardware design wireless receivers with acceptable implementation loss achieve low-power designs Contains numerous figures to illustrate techniques Features concrete design examples of MC-CDMA systems and cognitive radio applications Presents theoretical discussions that focus on concepts rather than mathematical derivation Provides a much-needed single source of material from numerous papers Based on course materials for a class in digital communication IC design, this book is ideal for advanced undergraduate or post-graduate students from either VLSI design or signal processing backgrounds. New and experienced engineers in industry working on algorithms or hardware for wireless communications devices will also find this book to be a key reference.




Essentials of RF Front-end Design and Testing


Book Description

Essentials of RF Front-end Design and Testing Highly comprehensive text delivering the RF system essentials required to understand, develop, and evaluate the performance of RF wireless systems Essentials of RF Front-end Design and Testing: A Practical Guide for Wireless Systems is a system-oriented book which provides several wireless communication disciplines in one volume. The book covers a wide range of topics, including antenna fundamentals, phased array antenna and MIMOs that are crucial for the latest 5G mmWave and future 6G wireless systems, high-frequency transmission lines, RF building blocks that are necessary to understand how various RF subsystems are interrelated and implemented in wireless systems, and test setups for conducted and Over-The-Air (OTA) transmitter and receiver tests. The text enables readers to understand, develop, and evaluate the performance of RF wireless systems. The text focuses on RF system performance and testing rather than mathematical proofs, which are available in the provided references. Although the book is intended for testing and building RF system prototypes, it has the sufficient theoretical background needed for RF systems design and testing. Each chapter includes learning objectives, review questions, and references. Sample topics covered in the book include: An overview of cellular phone systems, 5G NR wireless technology, MIMO technology, terahertz communications for 6G wireless technology, and modulation and multiplexing Analog and digital modulation techniques, including AM, SSB, FM, FSK, PSK, QAM, SSFH, DSSS, and OFDM High-frequency transmission lines, S-parameters, low-noise amplifier, RF mixers, filters, power amplifiers, frequency synthesizers, circulators/isolators, directional couplers, RF switches, and RF phase shifters Antenna basics, including antenna gain, radiation pattern, input impedance, polarization, and antenna noise temperature; microstrip antenna, antenna array, propagation path loss, compact antenna test range (CATR), and test setups for antenna measurements. Basics of MIMO and beamforming technology, including analog, digital, and hybrid beamforming Test setups for characterizing the key RF performance parameters of 5G New Radio base station transmitters and receivers. Essentials of RF Front-end Design and Testing: A Practical Guide for Wireless Systems is a highly comprehensive resource on the subject and is intended for graduate engineers and technologists involved in designing, developing, and testing wireless systems, along with undergraduate/graduate students, enhancing their learning experience of RF subsystems/systems characterization.




Designing RF Combining Systems for Shared Radio Sites


Book Description

This book explores Radio Access Networks (RANs) within LMR systems, comprising base stations, mobile radios, and hand portable radios. These components facilitate communication among end users via a network of fixed base stations, antennas, and combining systems strategically placed across radio repeater sites throughout the coverage area. This resource also delves into the consequences of interference, highlighting the painstaking efforts required to diagnose and rectify interference issues through field testing and redesign. The central focus being on the design intricacies of base station antennas and combining systems at densely populated shared radio repeater sites. The book underscores how to identify potential sources of interference from co-located transmitters and receivers, effectively surveying sites to anticipate high-level interfering signals. This critical information forms the foundation for crafting base station antenna and combining systems that curtail interference, subsequently optimizing coverage and minimizing costs. Throughout its pages, the book lays out a detailed roadmap for designing LMR systems resilient to interference. By outlining essential principles and methodologies, the book guides practitioners in creating LMR networks that flawlessly align with end users' communication requirements. The resulting systems not only meet expectations but surpass them, offering the coverage area and communication quality demanded by public safety and utility organizations during critical operations. Ultimately, the book serves as an indispensable resource for engineers, designers, and professionals engaged in crafting LMR systems capable of delivering impeccable performance and reliability.




An Introduction to Optical Wireless Mobile Communication


Book Description

The use of the optical spectrum for wireless communications has gained significant interest in recent years. Applications range from low-rate simplex transmission links using existing embedded CMOS cameras in smartphones, referred to as optical camera communications (OCC), mobile light fidelity (LiFi) networking in homes, offices, urban and sub-sea environments to free-space gigabit interconnects in data centers and point-to-point long-range wireless backhaul links outdoors and in space. This exciting book focuses on the use of optical wireless communications (OWC) for mobile use cases. The book discusses existing conventional radio frequency (RF)-based wireless access technology and presents the challenges that can impact the requirements of the future wave of new wireless services in the context of artificial intelligence (AI) driven autonomous systems and machine-type communications. The relationship between visible light communications (VLC) and light fidelity (LiFi), is explored, and the major advantages of VLC and LiFi such as security and data density, and discuss existing research challenges are also introduced. Channel modeling techniques are provided for mobile multiuser scenarios, and will introduce key building blocks to achieve LiFi cellular networks achieving orders of magnitude improvements of area spectral efficiency compared to state-of-the-art. Challenges that arise from moving from a static point-to-point visible light link to a LiFi network that is capable of serving hundreds of mobile and fixed nodes are discussed. An overview of recent standardization activities and the commercialization challenges of this disruptive technology is also provided.




Software Defined Radio: Theory and Practice


Book Description

Software Defined Radio: Theory and Practice is a comprehensive resource covering software defined radio (SDR) from theory to practical applications. The book provides foundational knowledge for communication engineers and SDR enthusiasts. It covers digital modulation techniques, from basic to advanced techniques such as SC-OFDM and GMSK. The book then discusses RF channel impairments and strategies for eliminating them along with the use of channel equalization and modern frequency domain equalizers utilized in cellular telephony. Source and channel coding are introduced, and receiver analog design is thoroughly researched, comparing traditional and modern designs. The book includes important review topics such as complex numbers, fixed-point numeric formats, decision theory, Doppler, and more. Software Defined Radio: Theory and Practice offers a well-rounded approach to understanding and applying SDR, combining theoretical knowledge with practical exercises and simulations for a comprehensive learning experience.




Implementing Full Duplexing for 5G


Book Description

This exciting new book examines the feasibility of using a method of doubling the capacity of cellular networks by simultaneously transmitting and receiving signals at the same frequency, a process known as full duplexing (FD). To realize full duplexing, changes in the hardware of the cell- base stations, relaying equipment, “hot spot” access points and mobile phones are necessary to prevent the hardware’s transmitters from interfering with their own receivers. This requires looking at how to separate the strong transmitted signal from the very weak received signal, a process requiring both hardware (analog) changes and more complex digital signal processing. Different ways of achieving that goal are examined. The books reviews the merits of hardware changes involving new duplexing components that may be different depending on the frequency band and cell hardware being used. Developing full duplex (FD) systems in 5G LTE cellular communications and what can be achieved with ferrite-based circulators in terms of size reduction and performance enhancement, especially at millimetric frequencies, is considered. The relative merits of ferrite and non-ferrite circulators are compared in terms of their fundamental materials and device technologies, such as isolation, insertion loss, bandwidth and non-linearity. FD in the entire 5G cell is also examined and its resulting range of equipment and device communication. This includes front-hauling, more sophisticated back and front-hauling, backhaul beam switching, and cell extenders and relays, all of which could involve FD.




5G and Satellite RF and Optical Integration


Book Description

5G and Satellite RF and Optical Integration, the latest ‘hot off the shelf’ groundbreaking book from Artech House authored by subject specialist Geoff Varrall is packed with essential time critical information. This updated edition has everything needed to know in order to understand the new world of terrestrial and non-terrestrial telecom technology. It analyzes the radio spectrum/band and technical specifications under consideration for 5G, along with the related performance, cost, and vertical market expectations. In addition, the book studies the cost of coexistence between 5G operators and other user communities' co-sharing spectrum, including GNSS; radio astronomers; radar; GSO, MEO, and LEO satellites in the Ku, K, and Ka bands and above; and satellite TV. Also covered is the role of free-space optical technology in 5G and satellite networks and what interference issues will arise from new band allocations. This includes co-shared allocations and how interference will be mitigated in and between next generation terrestrial and satellite 5G networks. The publication coincides with an inflection point where terrestrial, nonterrestrial, and RF and optical networks could be integrated in a financially useful way.




Wi-Fi 6: Protocol and Network


Book Description

With more than 15 billion Wi-Fi enabled devices, Wi-Fi has proven itself as a technology that has successfully evolved over the past 25 years. The need for high-speed connectivity is growing, as Wi-Fi has evolved into a fundamental utility that is expected to be available everywhere. This comprehensive resource covers six generations of Wi-Fi standards including protocol, implementation, and network deployment for both residential and enterprise environments. It will provide readers with a new understanding of how to approach and debug basic Wi-Fi problems, and will grant those wondering whether to pick 5G or Wi-Fi 6 for their product the clarity needed to make an informed decision. Readers will find in-depth coverage of Wi-Fi encryption and authentication methods, including explorations of recently uncovered security vulnerabilities and how to fix them. This book also provides detailed information on the implementation of Wi-Fi, including common regulatory and certification requirements, as well its associated challenges. This book also provides direction on the placement of Wi-Fi access points in indoor locations. It introduces the most recent Wi-Fi 6E certification, which defines requirements for devices operating on the newly opened 6 GHz band. Wi-Fi 6 is then compared with 5G technology, and this resource provides insight into the benefits of each as well as how these two technologies can be used to complement each other.




Baseband Receiver Design for Wireless MIMO-OFDM Communications


Book Description

The Second Edition of OFDM Baseband Receiver Design for Wirless Communications, this book expands on the earlier edition with enhanced coverage of MIMO techniques, additional baseband algorithms, and more IC design examples. The authors cover the full range of OFDM technology, from theories and algorithms to architectures and circuits. The book gives a concise yet comprehensive look at digital communication fundamentals before explaining signal processing algorithms in receivers. The authors give detailed treatment of hardware issues - from architecture to IC implementation. Links OFDM and MIMO theory with hardware implementation Enables the reader to transfer communication received concepts into hardware; design wireless receivers with acceptable implemntation loss; achieve low-power designs Covers the latest standards, such as DVB-T2, WiMax, LTE and LTE-A Includes more baseband algorithms, like soft-decoding algorithms such as BCJR and SOVA Expanded treatment of channel models, detection algorithms and MIMO techniques Features concrete design examples of WiMAX systems and cognitive radio apllications Companion website with lecture slides for instructors Based on materials developed for a course in digital communication IC design, this book is ideal for graduate students and researchers in VLSI design, wireless communications, and communications signal processing. Practicing engineers working on algorithms or hardware for wireless communications devices will also find this to be a key reference.