Introduction to $p$-adic Analytic Number Theory


Book Description

This book is an elementary introduction to $p$-adic analysis from the number theory perspective. With over 100 exercises included, it will acquaint the non-expert to the basic ideas of the theory and encourage the novice to enter this fertile field of research. The main focus of the book is the study of $p$-adic $L$-functions and their analytic properties. It begins with a basic introduction to Bernoulli numbers and continues with establishing the Kummer congruences. These congruences are then used to construct the $p$-adic analog of the Riemann zeta function and $p$-adic analogs of Dirichlet's $L$-functions. Featured is a chapter on how to apply the theory of Newton polygons to determine Galois groups of polynomials over the rational number field. As motivation for further study, the final chapter introduces Iwasawa theory.




Introduction to $p$-adic Analytic Number Theory


Book Description

This book is an elementary introduction to p-adic analysis from the number theory perspective. With over 100 exercises included, it will acquaint the non-expert to the basic ideas of the theory and encourage the novice to enter this fertile field of research. The main focus of the book is the study of p-adic L-functions and their analytic properties. It begins with a basic introduction to Bernoulli numbers and continues with establishing the Kummer congruences. These congruences are then used to construct the p-adic analog of the Riemann zeta function and p-adic analogs of Dirichlet's L-functi.




p-adic Numbers


Book Description

p-adic numbers are of great theoretical importance in number theory, since they allow the use of the language of analysis to study problems relating toprime numbers and diophantine equations. Further, they offer a realm where one can do things that are very similar to classical analysis, but with results that are quite unusual. The book should be of use to students interested in number theory, but at the same time offers an interesting example of the many connections between different parts of mathematics. The book strives to be understandable to an undergraduate audience. Very little background has been assumed, and the presentation is leisurely. There are many problems, which should help readers who are working on their own (a large appendix with hints on the problem is included). Most of all, the book should offer undergraduates exposure to some interesting mathematics which is off the beaten track. Those who will later specialize in number theory, algebraic geometry, and related subjects will benefit more directly, but all mathematics students can enjoy the book.




p-adic Numbers


Book Description

There are numbers of all kinds: rational, real, complex, p-adic. The p-adic numbers are less well known than the others, but they play a fundamental role in number theory and in other parts of mathematics. This elementary introduction offers a broad understanding of p-adic numbers. From the reviews: "It is perhaps the most suitable text for beginners, and I shall definitely recommend it to anyone who asks me what a p-adic number is." --THE MATHEMATICAL GAZETTE




A Course in p-adic Analysis


Book Description

Discovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.




Introduction to Analytic Number Theory


Book Description

Aimed at a level between textbooks and the latest research monographs, this book is directed at researchers, teachers, and graduate students interested in number theory and its connections with other branches of science. Choosing to emphasize topics not sufficiently covered in the literature, the author has attempted to give as broad a picture as possible of the problems of analytic number theory.




$p$-adic Analysis Compared with Real


Book Description

The book gives an introduction to $p$-adic numbers from the point of view of number theory, topology, and analysis. Compared to other books on the subject, its novelty is both a particularly balanced approach to these three points of view and an emphasis on topics accessible to undergraduates. in addition, several topics from real analysis and elementary topology which are not usually covered in undergraduate courses (totally disconnected spaces and Cantor sets, points of discontinuity of maps and the Baire Category Theorem, surjectivity of isometries of compact metric spaces) are also included in the book. They will enhance the reader's understanding of real analysis and intertwine the real and $p$-adic contexts of the book. The book is based on an advanced undergraduate course given by the author. The choice of the topic was motivated by the internal beauty of the subject of $p$-adic analysis, an unusual one in the undergraduate curriculum, and abundant opportunities to compare it with its much more familiar real counterpart. The book includes a large number of exercises. Answers, hints, and solutions for most of them appear at the end of the book. Well written, with obvious care for the reader, the book can be successfully used in a topic course or for self-study.




P-adic Analysis and Mathematical Physics


Book Description

p-adic numbers play a very important role in modern number theory, algebraic geometry and representation theory. Lately p-adic numbers have attracted a great deal of attention in modern theoretical physics as a promising new approach for describing the non-Archimedean geometry of space-time at small distances.This is the first book to deal with applications of p-adic numbers in theoretical and mathematical physics. It gives an elementary and thoroughly written introduction to p-adic numbers and p-adic analysis with great numbers of examples as well as applications of p-adic numbers in classical mechanics, dynamical systems, quantum mechanics, statistical physics, quantum field theory and string theory.




Steps into Analytic Number Theory


Book Description

This problem book gathers together 15 problem sets on analytic number theory that can be profitably approached by anyone from advanced high school students to those pursuing graduate studies. It emerged from a 5-week course taught by the first author as part of the 2019 Ross/Asia Mathematics Program held from July 7 to August 9 in Zhenjiang, China. While it is recommended that the reader has a solid background in mathematical problem solving (as from training for mathematical contests), no possession of advanced subject-matter knowledge is assumed. Most of the solutions require nothing more than elementary number theory and a good grasp of calculus. Problems touch at key topics like the value-distribution of arithmetic functions, the distribution of prime numbers, the distribution of squares and nonsquares modulo a prime number, Dirichlet's theorem on primes in arithmetic progressions, and more. This book is suitable for any student with a special interest in developing problem-solving skills in analytic number theory. It will be an invaluable aid to lecturers and students as a supplementary text for introductory Analytic Number Theory courses at both the undergraduate and graduate level.