An Introduction to Powder Metallurgy


Book Description

First published in 1994. Routledge is an imprint of Taylor & Francis, an informa company.




Powder Metallurgy


Book Description

Powder metallurgy, commonly designated by its initial letters asPM or PM, may be defined as the production of useful artefacts from metal powder without passing through the molten state. This introductory text examines the processes by which these powders are produced, and explores their behaviour in the subsequent consolidation stages.




Powder Metallurgy Technology


Book Description

Annotation Contents1 INTRODUCTION; 2 METAL POWDER PRODUCTION; 3 METAL POWDER CHARACTERISTICS; 4 METAL POWDER TRE-AMENT; 5 METAL POWDER COMPACT-ION; 6 SINTERING; 7 HOT CONSOLIDATION; 8 SECONDARY TREATMENT; 9 POWDER INJECTION MOULDING; 10 QUALITY CONTROL OF POWDER METALLURGY MATERIALS.







ASM Handbook


Book Description




Advances in Powder Metallurgy


Book Description

Powder metallurgy (PM) is a popular metal forming technology used to produce dense and precision components. Different powder and component forming routes can be used to create an end product with specific properties for a particular application or industry. Advances in powder metallurgy explores a range of materials and techniques used for powder metallurgy and the use of this technology across a variety of application areas. Part one discusses the forming and shaping of metal powders and includes chapters on atomisation techniques, electrolysis and plasma synthesis of metallic nanopowders. Part two goes on to highlight specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys. Part three reviews the manufacture and densification of PM components and explores joining techniques, process optimisation in powder component manufacturing and non-destructive evaluation of PM parts. Finally, part four focusses on the applications of PM in the automotive industry and the use of PM in the production of cutting tools and biomaterials. Advances in powder metallurgy is a standard reference for structural engineers and component manufacturers in the metal forming industry, professionals working in industries that use PM components and academics with a research interest in the field. Discusses the forming and shaping of metal powders and includes chapters on atomisation techniques Highlights specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys Reviews the manufacture and densification of PM components and explores joining techniques




Powder Metallurgy


Book Description

Powder Metallurgy discusses the production of metal powders and other materials made from it. It defines the meaning of metal powders with some illustrations. The book also identifies the processes similar between the production of metal powder and ceramic products. The technology involved and the variation in the process of metallurgy are covered in some chapters of the book. The book enumerates certain advantages in using powder metallurgy over other processes. Methods such as the reduction of the oxides of metals, electrolysis, thermal dissociation, and chemical disintegration are explained. The origin and improvement made on the method are discussed in detail. The goods created using the process are also explained, as well as the types of metals that are being used. A chapter of the book focuses on the flaws of powder metallurgy. The book will provide useful information to metal smiths, chemists, students, and researchers in the field of chemistry.




Powder Metallurgy of Superalloys


Book Description

Powder Metallurgy of Superalloys details the advancement of powder metallurgy in the context of producing superalloys. The book is comprised of nine chapters that cover the underlying principles of superalloys produced through powder metallurgy. The text first covers concerns in pre-alloyed dispersion-free powders, such as powder production and characterization; powder consolidation methods; and quality control and non-destructive evaluation of P/M superalloys. The next chapter talks about oxide-dispersion-strengthened superalloys. Next, the book discusses joining techniques for P/M superalloys and the practical applications of P/M superalloys. The title will be of great use to professionals in the materials manufacturing industry.




Unconventional Techniques for the Production of Light Alloys and Composites


Book Description

This book addresses methods used in the synthesis of light alloys and composites for industrial applications. It begins with a broad introduction to virtually all aspects of the technology of light alloys and composite materials for aircraft and aerospace applications. The basic theory of fiber and particle reinforcements; light metallic material characteristics and composite systems; components forms, and manufacturing techniques and processes are discussed. The book then progresses to describe the production of alloys and composites by unconventional techniques, such as powder metallurgy, sandwich technique, severe plastic deformation, additive manufacturing, and thermal spray, making it appropriate for researchers in both academia and industry. It will be of special interest to aerospace engineers. Provides a broad introduction to the technology used in manufacturing light alloys and composite materials; Describes the current technologies employed in synthesizing light alloys made from advanced materials; Focuses on unconventional techniques used to produce light alloys and composites in aerospace applications.




Powder Metallurgy Technology and Equipment: Selected Topics


Book Description

Volume is indexed by Thomson Reuters BCI (WoS). Powder metallurgy is one of the leading processes used for forming engineering components. The technology, as developed at the beginning of the 20th century, has since advanced significantly from both the materials and energy-conservation points of view. Novel, and automated, equipment has played a significant role in enhancing the growth of the powder metallurgy industry. The present work includes, in addition to the editor’s introductory paper, eleven invited papers from organizations of international repute. In brief, the book presents expert assessments from the major metal-powder and powder-metallurgy equipment-makers in the world. This distinguishes it from other works, which are contributed mainly by academics. The book concentrates on particular topics of interest and does not attempt to be comprehensive.