Introduction to Quality and Reliability Engineering


Book Description

This book presents the state-of-the-art in quality and reliability engineering from a product life-cycle standpoint. Topics in reliability include reliability models, life data analysis and modeling, design for reliability as well as accelerated life testing and reliability growth analysis, while topics in quality include design for quality, acceptance sampling and supplier selection, statistical process control, production tests such as environmental stress screening and burn-in, warranty and maintenance. The book provides comprehensive insights into two closely related subjects, and includes a wealth of examples and problems to enhance readers’ comprehension and link theory and practice. All numerical examples can be easily solved using Microsoft Excel. The book is intended for senior undergraduate and postgraduate students in related engineering and management programs such as mechanical engineering, manufacturing engineering, industrial engineering and engineering management programs, as well as for researchers and engineers in the quality and reliability fields. Dr. Renyan Jiang is a professor at the Faculty of Automotive and Mechanical Engineering, Changsha University of Science and Technology, China.




An Introduction to the Basics of Reliability and Risk Analysis


Book Description

The necessity of expertise for tackling the complicated and multidisciplinary issues of safety and risk has slowly permeated into all engineering applications so that risk analysis and management has gained a relevant role, both as a tool in support of plant design and as an indispensable means for emergency planning in accidental situations. This entails the acquisition of appropriate reliability modeling and risk analysis tools to complement the basic and specific engineering knowledge for the technological area of application.Aimed at providing an organic view of the subject, this book provides an introduction to the principal concepts and issues related to the safety of modern industrial activities. It also illustrates the classical techniques for reliability analysis and risk assessment used in current practice.




Basic Reliability Engineering Analysis


Book Description

BASIC Reliability Engineering Analysis describes reliability activities as they occur during an industrial development cycle. Reliability as a function of time is discussed, along with systems modeling, predicting and estimating reliability, and quality assurance. This book is comprised of seven chapters and begins with a brief introduction to the BASIC computer language used in the programs in the text. The second chapter describes the way reliability is taken into account in different parts of the development cycle, while the third chapter discusses the basic concepts of reliability as a function of time, failure rate, and some basic statistical concepts. The fourth chapter deals with the modeling of complex systems and related topics such as availability and maintainability. The fifth chapter describes the activities that can go on early in the development cycle, while the sixth chapter gives some of the techniques that can be used to analyze data generated during development or later in the cycle when equipment is in use. The final chapter offers a brief look at quality assurance and acquaints the reader with the concepts involved, using inspection by attributes to introduce the ideas. This monograph is intended for engineers or managers with a particular interest in reliability, as well as for engineering undergraduates.




Reliability, Quality, and Safety for Engineers


Book Description

Due to global competition, safety regulations, and other factors, manufacturers are increasingly pressed to create products that are safe, highly reliable, and of high quality. Engineers and quality assurance professionals need a cross-disciplinary understanding of these topics in order to ensure high standards in the design and manufacturing proce




Quality Control Applications


Book Description

Quality control is a constant priority in electrical, mechanical, aeronautical, and nuclear engineering – as well as in the vast domain of electronics, from home appliances to computers and telecommunications. Quality Control Applications provides guidance and valuable insight into quality control policies; their methods, their implementation, constant observation and associated technical audits. What has previously been a mostly mathematical topic is translated here for engineers concerned with the practical implementation of quality control. Once the fundamentals of quality control are established, Quality Control Applications goes on to develop this knowledge and explain how to apply it in the most effective way. Techniques are described and supported using relevant, real-life, case studies to provide detail and clarity for those without a mathematical background. Among the many practical examples, two case studies dramatize the importance of quality assurance: A shot-by-shot analysis of the errors made in the Fukushima Daiichi nuclear disaster; and the engineering failure with new technology due to the absence of quality control in an alternative energy project. This clear and comprehensive approach makes Quality Control Applications an essential reference for those studying engineering as well industry professionals involved in quality control across product and system design.




Site Reliability Engineering


Book Description

The overwhelming majority of a software system’s lifespan is spent in use, not in design or implementation. So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems? In this collection of essays and articles, key members of Google’s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You’ll learn the principles and practices that enable Google engineers to make systems more scalable, reliable, and efficient—lessons directly applicable to your organization. This book is divided into four sections: Introduction—Learn what site reliability engineering is and why it differs from conventional IT industry practices Principles—Examine the patterns, behaviors, and areas of concern that influence the work of a site reliability engineer (SRE) Practices—Understand the theory and practice of an SRE’s day-to-day work: building and operating large distributed computing systems Management—Explore Google's best practices for training, communication, and meetings that your organization can use




Reliability Engineering


Book Description

Reliability Engineering is intended for use as an introduction to reliability engineering, including the aspects analysis, design, testing, production and quality control of engineering components and systems. The book can be used for senior or dual-level courses on reliability. Numerous analytical and numerical examples and problems are used to illustrate the principles and concepts. Expanded explanations of the fundamental concepts are given throughout the book, with emphasis on the physical significance of the ideas. The mathematical background necessary in the area of probability and statistics is covered briefly to make the presentation complete and self-contained. Solving probability and reliability problems using MATLAB and Excel is also presented.




Reliability Engineering


Book Description

Using clear language, this book shows you how to build in, evaluate, and demonstrate reliability and availability of components, equipment, and systems. It presents the state of the art in theory and practice, and is based on the author's 30 years' experience, half in industry and half as professor of reliability engineering at the ETH, Zurich. In this extended edition, new models and considerations have been added for reliability data analysis and fault tolerant reconfigurable repairable systems including reward and frequency / duration aspects. New design rules for imperfect switching, incomplete coverage, items with more than 2 states, and phased-mission systems, as well as a Monte Carlo approach useful for rare events are given. Trends in quality management are outlined. Methods and tools are given in such a way that they can be tailored to cover different reliability requirement levels and be used to investigate safety as well. The book contains a large number of tables, figures, and examples to support the practical aspects.




Reliability Engineering


Book Description

An Integrated Approach to Product Development Reliability Engineering presents an integrated approach to the design, engineering, and management of reliability activities throughout the life cycle of a product, including concept, research and development, design, manufacturing, assembly, sales, and service. Containing illustrative guides that include worked problems, numerical examples, homework problems, a solutions manual, and class-tested materials, it demonstrates to product development and manufacturing professionals how to distribute key reliability practices throughout an organization. The authors explain how to integrate reliability methods and techniques in the Six Sigma process and Design for Six Sigma (DFSS). They also discuss relationships between warranty and reliability, as well as legal and liability issues. Other topics covered include: Reliability engineering in the 21st Century Probability life distributions for reliability analysis Process control and process capability Failure modes, mechanisms, and effects analysis Health monitoring and prognostics Reliability tests and reliability estimation Reliability Engineering provides a comprehensive list of references on the topics covered in each chapter. It is an invaluable resource for those interested in gaining fundamental knowledge of the practical aspects of reliability in design, manufacturing, and testing. In addition, it is useful for implementation and management of reliability programs.




Accelerated Quality and Reliability Solutions


Book Description

Drawing of real-world issues and with supporting data from industry, this book overviews the technique and equipment available to engineers and scientists to identify the solutions of the physical essence of engineering problems in simulation, accelerated testing, prediction, quality improvement, and risk during the design, manufacturing, and maintenance stages. For this goal the book integrates Quality Improvement and Accelerated Reliability/ Durability/ Maintainability/Test Engineering concepts. Accelerated Quality and Reliability Solutions includes new and unpublished aspects in quality: - complex analysis of factors that influence product quality, and other quality development and improvement problems during design and manufacturing ; in simulation: - the strategy for development of accurate physical simulation of field input influences on the actual product – a system of control for physical simulation of the random input influences – a methodology for selecting a representative input region for accurate simulation of the field conditions; in testing: - useful accelerated reliability testing (UART) – accelerated multiple environmental testing technology – trends in development of UART technology; in studying climate and reliability; in prediction: - accurate prediction (AP) of reliability, durability, and maintainability - criteria of AP - development of techniques, etc.. The book includes new and effective aspects integration of quality, reliability, and maintainability. Other key features: - Includes aspects of quality integrated with reliability which can help to solve earlier inaccessible problems during design, manufacturing, and usage - Develops a new approach to improving the engineering culture for solving quality and reliability problems. - Enables the accurate prediction of quality, reliability, durability, and maintainability - Proposes strategies for accelerated quality, reliability, durability, and maintainability improvement and development - Combines new techniques with equipment for accurate physical simulation of field situation (mechanical, electrical, multi-environmental, and other influences, as well as human and other factors) for development accelerated testing (including reliability testing) and research - Overviews the latest techniques in physical simulation; accelerated testing; prediction of reliability, durability, and maintainability; quality development and improvement; safety aspects of risk assessment, especially for transportation - Supported by real life examples and industry data - Deals with the latest techniques in physical simulation, accelerated testing, prediction of reliability, durability, maintainability, quality development and safety aspects of risk assessment - Provides step-by-step guidance on the accurate prediction of quality factors, the physical simulation of field situations and of accelerated reliability testing - Dramatically reduces recalls by solving product improvement problems through the integration of quality development with reliability