Introduction To Quantum Mechanics: Schrodinger Equation And Path Integral (Second Edition)


Book Description

This text on quantum mechanics begins by covering all the main topics of an introduction to the subject. It then concentrates on newer developments. In particular it continues with the perturbative solution of the Schrödinger equation for various potentials and thereafter with the introduction and evaluation of their path integral counterparts. Considerations of the large order behavior of the perturbation expansions show that in most applications these are asymptotic expansions. The parallel consideration of path integrals requires the evaluation of these around periodic classical configurations, the fluctuation equations about which lead back to specific wave equations. The period of the classical configurations is related to temperature, and permits transitions to the thermal domain to be classified as phase transitions.In this second edition of the text important applications and numerous examples have been added. In particular, the chapter on the Coulomb potential has been extended to include an introduction to chemical bonds, the chapter on periodic potentials has been supplemented by a section on the band theory of metals and semiconductors, and in the chapter on large order behavior a section has been added illustrating the success of converging factors in the evaluation of asymptotic expansions. Detailed calculations permit the reader to follow every step.




Introduction to Quantum Mechanics


Book Description

This text on quantum mechanics begins by covering all the main topics of an introduction to the subject. It then concentrates on newer developments. In particular it continues with the perturbative solution of the Schrödinger equation for various potentials and thereafter with the introduction and evaluation of their path integral counterparts. Considerations of the large order behaviour of the perturbation expansions show that in most applications these are asymptotic expansions. The parallel consideration of path integrals requires the evaluation of these around periodic classical configurations, the fluctuation equations about which lead back to specific wave equations. The period of the classical configurations is related to temperature, and permits transitions to the thermal domain to be classified as phase transitions.In this second edition of the text important applications and numerous examples have been added. In particular, the chapter on the Coulomb potential has been extended to include an introduction to chemical bonds, the chapter on periodic potentials has been supplemented by a section on the band theory of metals and semiconductors, and in the chapter on large order behavior a section has been added illustrating the success of converging factors in the evaluation of asymptotic expansions. Detailed calculations permit the reader to follow every step.







Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets


Book Description

This is the third, significantly expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations. In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions. The powerful Feynman -- Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals. Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbationexpansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders. Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chem-Simons theory of particles with fractional statistics (anyohs) is introduced and applied to explain the fractional quantum Hall effect. The relevance of path integrals to financial markets is discussed, and improvements of the famous Black -- Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.




Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets (4th Edition)


Book Description

This is the fourth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions.The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals.Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders.Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.The author's other book on ‘Critical Properties of φ4 Theories’ gives a thorough introduction to the field of critical phenomena and develops new powerful resummation techniques for the extraction of physical results from the divergent perturbation expansions.




Path Integrals In Quantum Mechanics, Statistics, Polymer Physics, And Financial Markets (5th Edition)


Book Description

This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have been made possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's time-sliced formula to include singular attractive 1/r- and 1/r2-potentials. The second is a new nonholonomic mapping principle carrying physical laws in flat spacetime to spacetimes with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.In addition to the time-sliced definition, the author gives a perturbative, coordinate-independent definition of path integrals, which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely products of distributions.The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent results. The convergence is uniform from weak to strong couplings, opening a way to precise evaluations of analytically unsolvable path integrals in the strong-coupling regime where they describe critical phenomena.Tunneling processes are treated in detail, with applications to the lifetimes of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A variational treatment extends the range of validity to small barriers. A corresponding extension of the large-order perturbation theory now also applies to small orders.Special attention is devoted to path integrals with topological restrictions needed to understand the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact, recently experienced in the world markets, that large fluctuations occur much more frequently than in Gaussian distributions.




Path Integrals and Hamiltonians


Book Description

Providing a pedagogical introduction to the essential principles of path integrals and Hamiltonians, this book describes cutting-edge quantum mathematical techniques applicable to a vast range of fields, from quantum mechanics, solid state physics, statistical mechanics, quantum field theory, and superstring theory to financial modeling, polymers, biology, chemistry, and quantum finance. Eschewing use of the Schrödinger equation, the powerful and flexible combination of Hamiltonian operators and path integrals is used to study a range of different quantum and classical random systems, succinctly demonstrating the interplay between a system's path integral, state space, and Hamiltonian. With a practical emphasis on the methodological and mathematical aspects of each derivation, this is a perfect introduction to these versatile mathematical methods, suitable for researchers and graduate students in physics and engineering.




Principles of Quantum Mechanics


Book Description

R. Shankar has introduced major additions and updated key presentations in this second edition of Principles of Quantum Mechanics. New features of this innovative text include an entirely rewritten mathematical introduction, a discussion of Time-reversal invariance, and extensive coverage of a variety of path integrals and their applications. Additional highlights include: - Clear, accessible treatment of underlying mathematics - A review of Newtonian, Lagrangian, and Hamiltonian mechanics - Student understanding of quantum theory is enhanced by separate treatment of mathematical theorems and physical postulates - Unsurpassed coverage of path integrals and their relevance in contemporary physics The requisite text for advanced undergraduate- and graduate-level students, Principles of Quantum Mechanics, Second Edition is fully referenced and is supported by many exercises and solutions. The book’s self-contained chapters also make it suitable for independent study as well as for courses in applied disciplines.




Path Integrals in Quantum Mechanics


Book Description

Quantum field theory is hardly comprehensible without path integrals: the goal of this book is to introduce students to this topic within the context of ordinary quantum mechanics and non-relativistic many-body theory, before facing the problems associated with the more involved quantum field theory formalism.




Path Integral Approach to Quantum Physics


Book Description

Specifically designed to introduce graduate students to the functional integration method in contemporary physics as painlessly as possible, the book concentrates on the conceptual problems inherent in the path integral formalism. Throughout, the striking interplay between stochastic processes, statistical physics and quantum mechanics comes to the fore, and all the methods of fundamental interest are generously illustrated by important physical examples.