Introduction to Quantum Mechanics with Applications to Chemistry


Book Description

Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.




Modern Quantum Chemistry


Book Description

This graduate-level text explains the modern in-depth approaches to the calculation of electronic structure and the properties of molecules. Largely self-contained, it features more than 150 exercises. 1989 edition.




Introduction to Quantum Mechanics


Book Description

Introduction to Quantum Mechanics, 2nd Edition provides an accessible, fully updated introduction to the principles of quantum mechanics. It outlines the fundamental concepts of quantum theory, discusses how these arose from classic experiments in chemistry and physics, and presents the quantum-mechanical foundations of current scientific developments.Beginning with a solid introduction to the key principles underpinning quantum mechanics in Part 1, the book goes on to expand upon these in Part 2, where fundamental concepts such as molecular structure and chemical bonding are discussed. Finally, Part 3 discusses applications of this quantum theory across some newly developing applications, including chapters on Density Functional Theory, Statistical Thermodynamics and Quantum Computing.Drawing on the extensive experience of its expert author, Introduction to Quantum Mechanics, 2nd Edition is a lucid introduction to the principles of quantum mechanics for anyone new to the field, and a useful refresher on fundamental knowledge and latest developments for those varying degrees of background. - Presents a fully updated accounting that reflects the most recent developments in Quantum Theory and its applications - Includes new chapters on Special Functions, Density Functional Theory, Statistical Thermodynamics and Quantum Computers - Presents additional problems and exercises to further support learning




Computational Chemistry


Book Description

Computational chemistry has become extremely important in the last decade, being widely used in academic and industrial research. Yet there have been few books designed to teach the subject to nonspecialists. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hückel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.




Quantum Mechanics in Chemistry


Book Description

Advanced graduate-level text looks at symmetry, rotations, and angular momentum addition; occupation number representations; and scattering theory. Uses concepts to develop basic theories of chemical reaction rates. Problems and answers.




Quantum Theory for Chemical Applications


Book Description

"Quantum Theory for Chemical Applications (QTCA) Quantum theory, or more specifically, quantum mechanics is endlessly fascinating, curious & strange, and often considered to be difficult to learn. It is true that quantum mechanics is a mathematical theory. Its scope, its predictions, the wisdom we gain from its results, all these become fully clear only in the context of the relevant equations and calculations. But the study of quantum mechanics is definitely worth the effort, and - as I like to tell my students- it is not rocket science"--




Quantum Mechanics for Chemists


Book Description

This book is designed to provide chemistry undergraduates with a basic understanding of the principles of quantum mechanics.




Problems and Solutions in Quantum Chemistry and Physics


Book Description

Unusually varied problems, with detailed solutions, cover quantum mechanics, wave mechanics, angular momentum, molecular spectroscopy, scattering theory, more. 280 problems, plus 139 supplementary exercises.




Fundamentals of Quantum Mechanics


Book Description

Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models—including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom—are clearly and completely presented. Applications of these models to selected "real world topics are also included.This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest. - Accessible style and colorful illustrations make the content appropriate for professional researchers and students alike - Presents results of quantum mechanical calculations that can be performed with readily available software - Provides exceptionally clear discussions of spin-orbit coupling and group theory, and comprehensive coverage of barrier penetration (quantum mechanical tunneling) that touches upon hot topics, such as superconductivity and scanning tunneling microscopy - Problems given at the end of each chapter help students to master concepts




Quantum Mechanics with Applications to Nanotechnology and Information Science


Book Description

Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. - This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena - The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology - Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology - As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today - There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has