Introduction to Quasicrystals


Book Description

Aperiodicity and Order, Volume 1: Introduction to Quasicrystals deals with various aperiodic types of order in quasicrystals as well as the basic physics of quasicrystalline order and materials. Questions about the nature of order and the order of nature are addressed. This volume is comprised of six chapters; the first of which introduces the reader to icosahedral coordination in metallic crystals, with emphasis on the structural principles of metallic materials that are crystalline and may be expected to carry over to aperiodic materials. The discussion then turns to short- and long-range icosahedral orders in glass, crystals, and quasicrystals. The origins of icosahedral order are explained, and the physical properties of icosahedral materials are described. The chapters that follow focus on the metallurgy of quasicrystals, the crystallography of ideal icosahedral crystals, and stability and deformations in quasicrystalline solids. The book concludes with a discussion on symmetry, elasticity, and hydrodynamics in quasiperiodic structures. A pedagogical review of continuum elastic-hydrodynamic theory for quasicrystals and related structures is presented. This book is intended primarily as an introduction for new students in the field and as a reference for active researchers.




Quasicrystals


Book Description

The book provides an introduction to all aspects of the physics of quasicrystals. The chapters, each written by an expert in this field, cover quasiperiodic tilings and the modeling of the atomic structure of quasicrystals. The electronic density of states and the calculation of the electronic structure play a key role in this introduction, as does an extensive discussion of the atomic dynamics. The study of defects in quasicrystals by high resolution electron microscopy and the computer simulations of defects and fracture in decorated tilings are important subjects for the application of these aperiodic crystals.




Quasicrystals


Book Description

A comprehensive and up-to-date review, covering the broad range of this outstanding class of materials among intermetallic alloys. Starting with metallurgy and characterization, the authors continue on to structure and mathematical modeling. They use this basis to move on to dealing with electronic, magnetic, thermal, dynamic and mechanical properties, before finally providing an insight into surfaces and thin films. The authors belong to a research program on quasicrystals, sponsored by the German Research Society and managed by Hans-Rainer Trebin, such that most of the latest results are pre.




Quasicrystals


Book Description

Quasicrystals: The State of the Art has proven to be a useful introduction to quasicrystals for mathematicians, physicists, materials scientists, and students. The original intent was for the book to be a progress report on recent developments in the field. However, the authors took care to adopt a broad, pedagogical approach focusing on points of lasting value. Many subtle and beautiful aspects of quasicrystals are explained in this book (and nowhere else) in a way that is useful for both the expert and the student. In this second edition, some authors have appended short notes updating their essays. Two new chapters have been added. Chapter 16, by Goldman and Thiel, reviews the experimental progress since the first edition (1991) in making quasicrystals, determining their structure, and finding applications. In Chapter 17, Steinhardt discusses the quasi-unit cell picture, a promising, new approach for describing the structure and growth of quasicrystals in terms of a single, repeating, overlapping cluster of atoms.




Crystallography of Quasicrystals


Book Description

From tilings to quasicrystal structures and from surfaces to the n-dimensional approach, this book gives a full, self-contained in-depth description of the crystallography of quasicrystals. It aims not only at conveying the concepts and a precise picture of the structures of quasicrystals, but it also enables the interested reader to enter the field of quasicrystal structure analysis. Going beyond metallic quasicrystals, it also describes the new, dynamically growing field of photonic quasicrystals. The readership will be graduate students and researchers in crystallography, solid-state physics, materials science, solid- state chemistry and applied mathematics.




Quasicrystals


Book Description

promoting the very notion of quasiperiodic order, and to spur its physical implications and technological capabilities. It, therefore, explores the fundamental aspects of intermetallic, photonic, and phononic quasicrystals, as well as soft-matter quasicrystals, including their intrinsic physical and structural properties. In addition, it thoroughly discusses experimental data and related theoretical approaches to explain them, extending the standard treatment given in most current solid state physics literature. It also explores exciting applications in new technological devices of quasiperiodically ordered systems, including multilayered quasiperiodic systems, along with 2D and 3D designs, whilst outlining new frontiers in quasicrystals research. This book can be used as a reader-friendly introductory text for graduate students, in addition to senior scientists and researchers coming from the fields of physics, chemistry, materials science, and engineering. Key features: • Provides an updated and detailed introduction to the interdisciplinary field of quasicrystals in a tutorial style, considering both fundamental aspects and additional freedom degrees provided by designs based on quasiperiodically ordered materials. • Includes 50 fully worked out exercises with detailed solutions, motivating, and illustrating the different concepts and notions to provide readers with further learning opportunities. • Presents a complete compendium of the current state of the art knowledge of quasicrystalline matter, and outlines future next generation materials based on quasiperiodically ordered designs for their potential use in useful technological devices. Dr. Enrique Maciá-Barber is Professor of condensed matter physics at the Universidad Complutense de Madrid. His research interests include the thermoelectric properties of quasicrystals and DNA biophysics. In 2010 he received the RSEF- BBVA Foundation Excellence Physics Teaching Award. His book Aperiodic Structures in Condensed Matter: Fundamentals and Applications (CRC Press, Boca-Raton, 2009) is one of the Top Selling Physics Books according to YBP Library Services.




Aperiodic Order: Volume 1, A Mathematical Invitation


Book Description

Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The underlying mathematics, known as the theory of aperiodic order, is the subject of this comprehensive multi-volume series. This first volume provides a graduate-level introduction to the many facets of this relatively new area of mathematics. Special attention is given to methods from algebra, discrete geometry and harmonic analysis, while the main focus is on topics motivated by physics and crystallography. In particular, the authors provide a systematic exposition of the mathematical theory of kinematic diffraction. Numerous illustrations and worked-out examples help the reader to bridge the gap between theory and application. The authors also point to more advanced topics to show how the theory interacts with other areas of pure and applied mathematics.




Quasicrystals


Book Description

In 1984 physicists discovered a monster in the world of crystallography, a structure that appeared to contain five-fold symmetry axes, which cannot exist in strictly periodic structures. Such quasi-periodic structures became known as quasicrystals. A previously formulated theory in terms of higher dimensional space groups was applied to them and new alloy phases were prepared which exhibited the properties expected from this model more closely. Thus many of the early controversies were dissolved. In 2011, the Nobel Prize for Chemistry was awarded to Dan Shechtman for the discovery of quasicrystals. This primer provides a descriptive approach to the subject for those coming to it for the first time. The various practical, experimental, and theoretical topics are dealt with in an accessible style. The book is completed by problem sets and there is a computer program that generates a Penrose lattice.




Aperiodic Crystals


Book Description

Most materials and crystals have an atomic structure which is described by a regular stacking of a microscopic fundamental unit, the unit cell. However, there are also many well ordered materials without such a unit cell. This book deals with the structure determination and a discussion of the main special properties of these materials.




Physical Properties of Quasicrystals


Book Description

Quasicrystals are a new form of the solid state which differ from the other two known forms, crystalline and amorphous, by possesing a new type of long-range translational order, called quasiperiodicty, and a noncrystallographic orientational order. This book provides an up-to-date description of the unusual physical properties of these new materials. Emphasis is placed on the experimental results, which are compared with those of the corresponding crystalline and amorphous systems and discussed in terms of modern theoretical models. Written by leading authorities in the field, the book will be of great use both to experienced workers in the field and to uninitiated graduate students.