Introduction to Radar Using Python and MATLAB


Book Description

This comprehensive resource provides readers with the tools necessary to perform analysis of various waveforms for use in radar systems. It provides information about how to produce synthetic aperture (SAR) images by giving a tomographic formulation and implementation for SAR imaging. Tracking filter fundamentals, and each parameter associated with the filter and how each affects tracking performance are also presented. Various radar cross section measurement techniques are covered, along with waveform selection analysis through the study of the ambiguity function for each particular waveform from simple linear frequency modulation (LFM) waveforms to more complicated coded waveforms. The text includes the Python tool suite, which allows the reader to analyze and predict radar performance for various scenarios and applications. Also provided are MATLAB® scripts corresponding to the Python tools. The software includes a user-friendly graphical user interface (GUI) that provides visualizations of the concepts being covered. Users have full access to both the Python and MATLAB source code to modify for their application. With examples using the tool suite are given at the end of each chapter, this text gives readers a clear understanding of how important target scattering is in areas of target detection, target tracking, pulse integration, and target discrimination.




Radar Signals


Book Description

Radar Signals: An Introduction to Theory and Application introduces the reader to the basic theory and application of radar signals that are designated as large time-bandwidth or pulse-compression waveforms. Topics covered include matched filtering and pulse compression; optimum predetection processing; the radar ambiguity function; and the linear frequency modulation waveform and matched filter. Parameter estimation and discrete coded waveforms are also discussed, along with the effects of distortion on matched-filter signals. This book is comprised of 14 chapters and begins with an overview of the concepts and techniques of pulse compression matched filtering, with emphasis on coding source and decoding device. The discussion then turns to the derivation of the matched-filter properties in order to maximize the signal-to-noise ratio; analysis of radar ambiguity function using the principle of stationary phase; parameter estimation and the method of maximum likelihood; and measurement accuracies of matched-filter radar signals. Waveform design criteria for multiple and dense target environments are also considered. The final chapter describes a number of techniques for designing microwave dispersive delays. This monograph will be a useful resource for graduate students and practicing engineers in the field of radar system engineering.




MATLAB Simulations for Radar Systems Design


Book Description

Simulation is integral to the successful design of modern radar systems, and there is arguably no better software for this purpose than MATLAB. But software and the ability to use it does not guarantee success. One must also: Understand radar operations and design philosophy Know how to select the radar parameters to meet the design req




Digital Filters Using MATLAB


Book Description

This textbook provides comprehensive coverage for courses in the basics of design and implementation of digital filters. The book assumes only basic knowledge in digital signal processing and covers state-of-the-art methods for digital filter design and provides a simple route for the readers to design their own filters. The advanced mathematics that is required for the filter design is minimized by providing an extensive MATLAB toolbox with over 300 files. The book presents over 200 design examples with MATLAB code and over 300 problems to be solved by the reader. The students can design and modify the code for their use. The book and the design examples cover almost all known design methods of frequency-selective digital filters as well as some of the authors’ own, unique techniques.




Synthetic Aperture Radar Signal Processing with MATLAB Algorithms


Book Description

An up-to-date analysis of the SAR wavefront reconstruction signal theory and its digital implementation With the advent of fast computing and digital information processing techniques, synthetic aperture radar (SAR) technology has become both more powerful and more accurate. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms addresses these recent developments, providing a complete, up-to-date analysis of SAR and its associated digital signal processing algorithms. This book introduces the wavefront reconstruction signal theory that underlies the best SAR imaging methods and provides clear guidelines to system design, implementation, and applications in diverse areas-from airborne reconnaissance to topographic imaging of ocean floors to surveillance and air traffic control to medical imaging techniques, and numerous others. Enabling professionals in radar signal and image processing to use synthetic aperture technology to its fullest potential, this work: * Includes M-files to supplement this book that can be retrieved from The MathWorks anonymous FTP server at ftp://ftp.mathworks.com/pub/books/soumekh * Provides practical examples and results from real SAR, ISAR, and CSAR databases * Outlines unique properties of the SAR signal that cannot be found in other information processing systems * Examines spotlight SAR, stripmap SAR, circular SAR, and monopulse SAR modalities * Discusses classical SAR processing issues such as motion compensation and radar calibration




An Introduction to MATLAB for Behavioral Researchers


Book Description

MATLAB is a powerful data analysis program, but many behavioral science researchers find it too daunting to learn and use. An Introduction to MATLAB for Behavioral Researchers is an easy-to-understand, hands-on guide for behavioral researchers who have no prior programming experience. Written in a conversational and non-intimidating style, the author walks students—step by step—through analyzing real experimental data. Topics covered include the basics of programming, the implementation of simple behavioral analyses, and how to make publication-ready figures. More advanced topics such as pseudo-randomization of trial sequences to meet specified criteria and working with psycholinguistic data are also covered. Interesting behavioral science examples and datasets from published studies, such as visualizing fixation patterns in eye-tracking studies and animal search behavior in two-dimensional space, help develop an intuition for data analysis, which is essential and can only be developed when working with real research problems and real data.




Synthetic Aperture Radar Imaging Mechanism for Oil Spills


Book Description

Synthetic Aperture Radar Imaging Mechanism for Oil Spills delivers the critical tool needed to understand the latest technology in radar imaging of oil spills, particularly microwave radar as a main source to understand analysis and applications in the field of marine pollution. Filling the gap between modern physics quantum theory and applications of radar imaging of oil spills, this reference is packed with technical details associated with the potentiality of synthetic aperture radar (SAR) and the key methods used to extract the value-added information necessary, such as location, size, perimeter and chemical details of the oil slick from SAR measurements. Rounding out with practical simulation trajectory movements of oil spills using radar images, this book brings an effective new source of technology and applications for today's oil and marine pollution engineers. - Bridges the gap between theory and application of the techniques involving oil spill monitoring - Helps readers understand a new approach to four-dimensional automatic detection - Provides advanced knowledge on image processing based on intelligent learning machine algorithms and new techniques for detection, such as quantum and multi-objective algorithms




Fundamentals of Radar Signal Processing


Book Description

Advances in DSP (digital signal processing) have radically altered the design and usage of radar systems -- making it essential for both working engineers as well as students to master DSP techniques. This text, which evolved from the author's own teaching, offers a rigorous, in-depth introduction to today's complex radar DSP technologies. Contents: Introduction to Radar Systems * Signal Models * Sampling and Quantization of Pulsed Radar Signals * Radar Waveforms * Pulse Compression Waveforms * Doppler Processing * Detection Fundamentals * Constant False Alarm Rate (CFAR) Detection * Introduction to Synthetic Aperture Imaging




In-Band Full-Duplex Wireless Systems Handbook


Book Description

Many wireless systems could benefit from the ability to transmit and receive on the same frequency at the same time, which is known as In-Band Full-Duplex (IBFD). This technology could lead to enhanced spectral efficiency for future wireless networks, such as fifth-generation New Radio (5G NR) and beyond, and could enable capabilities and applications that were previously considered impossible, such as IBFD with phased array systems. In this exciting new book, experts from industry, academic, and federal research institutions discuss the various approaches that can be taken to suppress the inherent self-interference that is generated in IBFD systems. Both static and adaptive techniques that span across the propagation, analog and digital domains are presented. Details and measured results that encompass high-isolation antenna designs, RF, and photonic cancellation as well as signal processing approaches, which include beamforming and linear/non-linear equalization are detailed. Throughout this book, state-of-the-art IBFD systems that utilize these technologies will be provided as practical examples for various applications. Expert IBFD perspectives from multiple research organizations and companies, which would provide readers with the most accurate state-of-the-art approaches. This is the first book that dives into both the techniques that make IBFD systems possible as well as several different applications that use IBFD technology.




Introduction to Synthetic Aperture Radar Using Python and MATLAB®


Book Description

This comprehensive introduction to synthetic aperture radar (SAR) is a practical guide to the analysis, simulation, and design of SAR systems. The video eBook uses constructive examples and real-world collected datasets to demonstrate image registration and autofocus methods. Both two- and three-dimensional image formation algorithms are presented. Hardware, software, and environmental parameters are used to estimate performance limits for SAR operation and utilization. A set of Python and MATLAB software tools is included and provides you with an effective mechanism to analyze and predict SAR performance for various imaging scenarios and applications. Examples which use the software tools are provided at the end of each chapter to reinforce critical SAR imaging topics such as clutter-to-noise ratio, mapping rate, spatial resolution, Doppler bandwidth, pulse repetition frequency, and coherency. This is an excellent resource for engineering professionals working in areas of radar signal processing and imaging as well as students interested in studying SAR.