Introduction to Radiometry and Photometry, Second Edition


Book Description

This second edition of an Artech House classic title describes in detail the relationship between radiometry and photometry. It covers information needed to solve problems in radiation transfer and detection, detectors, measuring instruments, and concepts in colorimetry. This revised second edition presents an updated treatment of modern radiometry and photometry, including brand new sections on applications and developments in light sources and scientific instruments for measuring radiation and light. Engineers are also provided with an exciting new chapter on the use of computerized optical ray tracing for “virtual” experiments on optical systems.




Introduction to Radiometry and Photometry


Book Description

This introduction provides ready access for the engineer or scientist who needs a one-stop source of information on radiometry and photometry. In clear and concise style, Introduction to Radiometry and Photometry describes in detail: the relationship between radiometry and photometry; the four fundamental concepts in radiometry and their photometric counterparts; the basic information needed to solve problems in radiation transfer and detection; detectors; measuring instruments; and concepts in colorimetry.




Introduction to Infrared and Electro-Optical Systems, Third Edition


Book Description

This newly revised and updated edition offers a current and complete introduction to the analysis and design of Electro-Optical (EO) imaging systems. The Third Edition provides numerous updates and several new chapters including those covering Pilotage, Infrared Search and Track, and Simplified Target Acquisition Model. The principles and components of the Linear Shift-Invariant (LSI) infrared and electro-optical systems are detailed in full and help you to combine this approach with calculus and domain transformations to achieve a successful imaging system analysis. Ultimately, the steps described in this book lead to results in quantitative characterizations of performance metrics such as modulation transfer functions, minimum resolvable temperature difference, minimum resolvable contrast, and probability of object discrimination. The book includes an introduction to two-dimensional functions and mathematics which can be used to describe image transfer characteristics and imaging system components. You also learn diffraction concepts of coherent and incoherent imaging systems which show you the fundamental limits of their performance. By using the evaluation procedures contained in this desktop reference, you become capable of predicting both sensor test and field performance and quantifying the effects of component variations. The book contains over 800 time-saving equations and includes numerous analyses and designs throughout. It also includes a reference link to special website prepared by the authors that augments the book in the classroom and serves as an additional resource for practicing engineers. With its comprehensive coverage and practical approach, this is a strong resource for engineers needing a bench reference for sensor and basic scenario performance calculations. Numerous analyses and designs are given throughout the text. It is also an excellent text for upper-level students with an interest in electronic imaging systems.




The Fiber-Optic Gyroscope, Third Edition


Book Description

This landmark work – considered by many in the field to be THE reference on fiber-optic gyroscopes (FOGs) – provides you with a complete and thorough system analysis of the FOG and remains unmatched by any other single source. Now in its third edition, this fully updated and authoritative book: Gives you access to all the details you need to know about optics, single-mode fiber optics, and integrated optics to fully grasp the design rules of the fiber-optic gyroscope Helps you understand the concepts that have emerged as the preferred solutions to obtain a practical device Guides you through the advances that have occurred in the last seven years since the previous edition was published and how they are implemented in the current FOGs Drawing on 45 years of research and development, The Fiber-Optic Gyroscope, Third Edition, features new content on the relationship between white-noise power spectral density and random walk; Allan variance; testing with optical coherence domain polarimetry; a new simple mechanical model of the thermally induced stresses and related strains in the sensing coil; simple viewing of the reduction of the Shupe effect with symmetrical windings; and comments about dispersion and birefringence dispersion. The book contains over 350 illustrations (including 70 new figures) and many helpful appendixes, and gives you everything you need to understand the fiber gyro. The author is a leading expert in this field and is one of the early pioneers of the practical optical architecture and signal processing technique that is universally used in today’s FOGs. This is a must-have reference for anyone working with FOGs, from students and academics learning about the device, to optoelectronics engineers and professionals needing to stay abreast of the current concepts and recent advances.




The ABCs of Fiber Optic Communication


Book Description

This unique practical handbook is the only one of its kind to provide the conceptual framework and troubleshooting tactics related to the manufacturing, selection, and installation of modern photonic networks, including optical fiber plants, optical transceivers, test and measurement equipment, and network architecture of SDH, OTN, IP/MPLS, FTTx networks, and PON. This resource includes the latest technological advancements and industry applications while covering the entire fiber ecosystem from installation to troubleshooting. This book presents the use of common tools like LPM (laser source and power meter) to overcome common issues related to optical patching and fiber plants and also discusses the use of specialized tools including the optical time domain reflectometer (OTDR) for issues with fiber plants and locating fiber breaks. Readers gain an understanding of the architecture of core TDM, IP, and Optical Access Networks including PON. Specific methodologies are explored for assessing OTN, DWDM, IT/MPLS, Optical Access Networks– PON/GPON or FTTx networks. Key parameters that influence the choice of fiber based on the network and application type are discussed. This book also provides an overview of the current and future developments in optical fibers, interfaces, transceivers and backbone networks.




Natural Photonics and Bioinspiration


Book Description

Photonic structures occurring in biological tissues such as butterfly wings, beetle elytra or fish scales are responsible for a broad range of optical effects including iridescence, narrow-band reflection, large solid-angle scattering, polarization effects, additive color mixing, fluid-induced color changes, controlled fluorescence. Studies have provided understanding of the underlying optical mechanisms and the biological functions as well as inspiration for the design and development of novel photonic devices, also called bioinspiration. In this forward-thinking book, the research related to photonic structures in natural organisms is reviewed with a main foPhotonic structures occurring in biological tissues such as butterfly wings, beetle elytra, or fish scales are responsible for a broad range of optical effects including iridescence, narrow band reflection, large solid-angle scattering, polarization, additive color mixing, fluid induced color changes, and controlled fluorescence. This book reviews research of biological photonic devices in accordance with the fundamental aspects of physical optics and environmental biology. It provides readers with an understanding of numerical modelling based on morphological and optical characterizations as well as the quantitative treatment of color vision. This forward-thinking book ties these concepts to the design and synthesis of bioinspired photonic devices and opens the door to the applications of nature’s lessons in the technical world. This resource introduces a methodology for working with and utilizing bioinspiration. It includes the experimental and numerical tools necessary for the characterization and simulation of photonic structures and uses original concepts as examples, with a focus on bioinspired hygrochromatic materials. Professionals are brought up to speed on a variety of fabrication techniques and methods of synthesis all following a straightforward bottom-up or top-down approach. The reader will gain an understanding of the capability of bioinspiration to meet human needs. This book’s explanation of how natural photonics structures behave as efficient solar absorbers or thermal management devices makes it a useful resource for technical professionals in the field of energy and environment, and the concepts presented in this book also have applications in the designs of optical coatings, sensors, and light sources.




Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB®


Book Description

This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.




Photovoltaic Systems Engineering, Second Edition


Book Description

In just the last few years, the increase in worldwide photovoltaic (PV) shipments has grown from 15 to 25 percent per year. Grid-connected applications have surpassed stand-alone applications, system components have realized significant improvements, and major efforts are underway to build a quality control infrastructure for PV systems. Such rapid growth and evolution continues to put engineers skilled in PV systems at a premium. Thoroughly updated, Photovoltaic Systems Engineering, Second Edition offers a practical engineering basis for PV system design. It provides quick exposure to all system building blocks, then examines both the whys and hows of the electrical, mechanical, economic, and aesthetic aspects of PV system design-why certain designs are done in certain ways and how the design process is implemented. Students mastering the contents of this book will have the engineering judgement needed to make intelligent decisions based on a clear understanding of the parameters involved in PV systems. Highlights of the Second Edition: Y Complete updates to each chapter that incorporate currently available system components and recent changes in codes and standards Y Increased emphasis on design trade-offs and the design of grid-connected systems Y New discussions on site evaluation, and battery connections Y A new section on array mounting system design Y A new section on utility interactive residential PV systems Y A new section on curve fitting using Excel Y A new appendix that presents a recommended format for submitting PV design packages for permitting or design review purposes Y Examples and exercises replaced or modified to incorporate contemporary components, such as the Linear Current Booster




Introduction to Nonimaging Optics


Book Description

Introduction to Nonimaging Optics covers the theoretical foundations and design methods of nonimaging optics, as well as key concepts from related fields. This fully updated, revised, and expanded Second Edition: Features a new and intuitive introduction with a basic description of the advantages of nonimaging optics Adds new chapters on wavefronts for a prescribed output (irradiance or intensity), infinitesimal étendue optics (generalization of the aplanatic optics), and Köhler optics and color mixing Incorporates new material on the simultaneous multiple surface (SMS) design method in 3-D, integral invariants, and étendue 2-D Contains 21 chapters, 24 fully worked and several other examples, and 1,000+ illustrations, including photos of real devices Addresses applications ranging from solar energy concentration to illumination engineering Introduction to Nonimaging Optics, Second Edition invites newcomers to explore the growing field of nonimaging optics, while providing seasoned veterans with an extensive reference book.




Introduction to Remote Sensing, Second Edition


Book Description

Providing a full introduction to remote sensing for all environmental scientists, this wide-ranging and authoritative text assumes no prior knowledge of remote sensing yet covers the field in sufficient depth to be suitable also as a research manual.