Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises and Solutions


Book Description

In this updated edition the main thrust is on applied Kalman filtering. Chapters 1-3 provide a minimal background in random process theory and the response of linear systems to random inputs. The following chapter is devoted to Wiener filtering and the remainder of the text deals with various facets of Kalman filtering with emphasis on applications. Starred problems at the end of each chapter are computer exercises. The authors believe that programming the equations and analyzing the results of specific examples is the best way to obtain the insight that is essential in engineering work.







Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises and Solutions


Book Description

In this updated edition the main thrust is on applied Kalman filtering. Chapters 1-3 provide a minimal background in random process theory and the response of linear systems to random inputs. The following chapter is devoted to Wiener filtering and the remainder of the text deals with various facets of Kalman filtering with emphasis on applications. Starred problems at the end of each chapter are computer exercises. The authors believe that programming the equations and analyzing the results of specific examples is the best way to obtain the insight that is essential in engineering work.




Introduction to Random Signal Analysis and Kalman Filtering


Book Description

Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.




Kalman Filtering


Book Description

This book provides readers with a solid introduction to the theoretical and practical aspects of Kalman filtering. It has been updated with the latest developments in the implementation and application of Kalman filtering, including adaptations for nonlinear filtering, more robust smoothing methods, and developing applications in navigation. All software is provided in MATLAB, giving readers the opportunity to discover how the Kalman filter works in action and to consider the practical arithmetic needed to preserve the accuracy of results. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department -- to obtain the manual, send an email to [email protected].




Kalman Filtering


Book Description

The definitive textbook and professional reference on Kalman Filtering – fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.




Optimal State Estimation


Book Description

A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.




Engineering Applications of MATLAB® 5.3 and SIMULINK® 3


Book Description

Written in two parts, the first revises the ideas and theoretical bases necessary for a good understanding of the techniques used in the second, which deals with applications of MATLAB(R) and SIMULINK(R) in process control and digital signal processing. Each application is treated through various techniques including the classical methods of automation and of deterministic and random digital processing using fuzzy logic and neural networks. The preceding mathematical study of the physical processes goes from finding the equations to editing the analogical model. The following SIMULINK(R) toolbox functions and blocks have been used: Control System, Signal Processing, Neural Network and Fuzzy Logic.




Feedback Systems


Book Description

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory




Bayesian Filtering and Smoothing


Book Description

A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.