Introduction to Random Signals and Noise


Book Description

Random signals and noise are present in many engineering systems and networks. Signal processing techniques allow engineers to distinguish between useful signals in audio, video or communication equipment, and interference, which disturbs the desired signal. With a strong mathematical grounding, this text provides a clear introduction to the fundamentals of stochastic processes and their practical applications to random signals and noise. With worked examples, problems, and detailed appendices, Introduction to Random Signals and Noise gives the reader the knowledge to design optimum systems for effectively coping with unwanted signals. Key features: Considers a wide range of signals and noise, including analogue, discrete-time and bandpass signals in both time and frequency domains. Analyses the basics of digital signal detection using matched filtering, signal space representation and correlation receiver. Examines optimal filtering methods and their consequences. Presents a detailed discussion of the topic of Poisson processes and shot noise. An excellent resource for professional engineers developing communication systems, semiconductor devices, and audio and video equipment, this book is also ideal for senior undergraduate and graduate students in Electronic and Electrical Engineering.




Random Signals and Noise


Book Description

Understanding the nature of random signals and noise is critically important for detecting signals and for reducing and minimizing the effects of noise in applications such as communications and control systems. Outlining a variety of techniques and explaining when and how to use them, Random Signals and Noise: A Mathematical Introduction focuses on applications and practical problem solving rather than probability theory. A Firm Foundation Before launching into the particulars of random signals and noise, the author outlines the elements of probability that are used throughout the book and includes an appendix on the relevant aspects of linear algebra. He offers a careful treatment of Lagrange multipliers and the Fourier transform, as well as the basics of stochastic processes, estimation, matched filtering, the Wiener-Khinchin theorem and its applications, the Schottky and Nyquist formulas, and physical sources of noise. Practical Tools for Modern Problems Along with these traditional topics, the book includes a chapter devoted to spread spectrum techniques. It also demonstrates the use of MATLAB® for solving complicated problems in a short amount of time while still building a sound knowledge of the underlying principles. A self-contained primer for solving real problems, Random Signals and Noise presents a complete set of tools and offers guidance on their effective application.




Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises and Solutions


Book Description

In this updated edition the main thrust is on applied Kalman filtering. Chapters 1-3 provide a minimal background in random process theory and the response of linear systems to random inputs. The following chapter is devoted to Wiener filtering and the remainder of the text deals with various facets of Kalman filtering with emphasis on applications. Starred problems at the end of each chapter are computer exercises. The authors believe that programming the equations and analyzing the results of specific examples is the best way to obtain the insight that is essential in engineering work.




Probability and Random Processes


Book Description

Miller and Childers have focused on creating a clear presentation of foundational concepts with specific applications to signal processing and communications, clearly the two areas of most interest to students and instructors in this course. It is aimed at graduate students as well as practicing engineers, and includes unique chapters on narrowband random processes and simulation techniques. The appendices provide a refresher in such areas as linear algebra, set theory, random variables, and more. Probability and Random Processes also includes applications in digital communications, information theory, coding theory, image processing, speech analysis, synthesis and recognition, and other fields. * Exceptional exposition and numerous worked out problems make the book extremely readable and accessible * The authors connect the applications discussed in class to the textbook * The new edition contains more real world signal processing and communications applications * Includes an entire chapter devoted to simulation techniques.




Digital Processing of Random Signals


Book Description

This excellent advanced text rigorously covers several topics. Geared toward students of electrical engineering, its material is sufficiently general to be applicable to other engineering fields. 1994 edition.




Principles of Random Signal Analysis and Low Noise Design


Book Description

Describes the leading techniques for analyzing noise. Discusses methods that are applicable to periodic signals,aperiodic signals, or random processes over finite or infiniteintervals. Provides readers with a useful reference when designing ormodeling communications systems.




Probability, Random Variables, and Random Processes


Book Description

Probability, Random Variables, and Random Processes is a comprehensive textbook on probability theory for engineers that provides a more rigorous mathematical framework than is usually encountered in undergraduate courses. It is intended for first-year graduate students who have some familiarity with probability and random variables, though not necessarily of random processes and systems that operate on random signals. It is also appropriate for advanced undergraduate students who have a strong mathematical background. The book has the following features: Several appendices include related material on integration, important inequalities and identities, frequency-domain transforms, and linear algebra. These topics have been included so that the book is relatively self-contained. One appendix contains an extensive summary of 33 random variables and their properties such as moments, characteristic functions, and entropy. Unlike most books on probability, numerous figures have been included to clarify and expand upon important points. Over 600 illustrations and MATLAB plots have been designed to reinforce the material and illustrate the various characterizations and properties of random quantities. Sufficient statistics are covered in detail, as is their connection to parameter estimation techniques. These include classical Bayesian estimation and several optimality criteria: mean-square error, mean-absolute error, maximum likelihood, method of moments, and least squares. The last four chapters provide an introduction to several topics usually studied in subsequent engineering courses: communication systems and information theory; optimal filtering (Wiener and Kalman); adaptive filtering (FIR and IIR); and antenna beamforming, channel equalization, and direction finding. This material is available electronically at the companion website. Probability, Random Variables, and Random Processes is the only textbook on probability for engineers that includes relevant background material, provides extensive summaries of key results, and extends various statistical techniques to a range of applications in signal processing.




Topics In the Theory of Random Noise


Book Description

In two main sections, this volume covers peaks of random functions and the effects of noise on relays and nonlinear self-excited oscillations in the presence of noise. Includes bibliographic references and index.




Introduction to Random Processes


Book Description




An Introduction to Statistical Signal Processing


Book Description

This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.