Introduction to Show Control


Book Description

Introduction to Show Control explains the methods and practice of interconnecting and synchronizing entertainment technology systems such as lighting, lasers, audio, video, stage machinery, animatronics, special effects, and pyrotechnic systems for live shows such as concerts, theater productions, theme park attractions, themed-retail installations, cruise ship shows, immersive art experiences, museum exhibits,and traditional performing arts.Topics covered include cueing systems, show types, system architectures, methods of connecting systems, such as OSC, SMPTE and MIDI TIme Code, and MIDI Show Control. The book culminates with an easy to understand set of system design principles and then examines a cohesive show control system design approach that is explored through realistic example systems from throughout the world of live show production. This new book-along with the companion volume Introduction to Show Networking-are the successors to Huntington's now-retired Show Networks and Control Systems, the industry standard since 1994.




Introduction to Show Control


Book Description

Introduction to Show Control explains the practice of interconnecting and synchronizing entertainment technology systems such as lighting, lasers, audio, video, stage machinery, animatronics, special effects, and pyrotechnic systems for live shows such as concerts, theater productions, theme park attractions, themed retail installations, cruise ship shows, immersive art experiences, museum exhibits, and traditional performing arts. Designed to be read along with Huntington’s companion volume Introduction to Show Networking, this book covers topics including cue concepts, triggers and synchronization, cueing systems, show types, and system architectures before moving on to methods of connecting entertainment control systems together. An easy-to-understand set of system design principles is introduced next, and then a cohesive show control design approach is explained and examined through practical example systems drawn from the world of live show production. This new book–along with the companion Introduction to Show Networking volume–are the successors to Huntington’s now-retired Show Networks and Control Systems (previously Control Systems for Live Entertainment), the industry standard since 1994.




Introduction to Show Networking


Book Description

Introduction to Show Networking covers the basics of how Ethernet networks provide a platform for entertainment control and audio/video media distribution for concerts, theatre productions, corporate and special events, cruise ship revues, wrestling shows, houses of worship, museum presentations, fountain spectaculars—any kind of show presented live for an audience. The book’s bottom-up approach was designed with show technicians in mind, starting with the basics and then moving up through cables, network switches, and layering, and on through Ethernet, and network components like TCP, UDP, IP and subnet masks, all with a practical focus. More advanced concepts are introduced, including broadcast storms and VLANs, along with show networking best practices. Closing out the book is a network design process demonstrated through practical, real-world examples for lighting, sound, video, scenic automation, and show control networks. An appendix covering binary and hexadecimal numbers is also included. This easy-reading book draws from Huntington’s Show Networks and Control Systems, the industry standard since 1994, but is completely re-focused, reorganized, and updated.




Control Systems for Live Entertainment


Book Description

The respected industry standard for technicians working in live entertainment.




Introduction to Linear Control Systems


Book Description

Introduction to Linear Control Systems is designed as a standard introduction to linear control systems for all those who one way or another deal with control systems. It can be used as a comprehensive up-to-date textbook for a one-semester 3-credit undergraduate course on linear control systems as the first course on this topic at university. This includes the faculties of electrical engineering, mechanical engineering, aerospace engineering, chemical and petroleum engineering, industrial engineering, civil engineering, bio-engineering, economics, mathematics, physics, management and social sciences, etc. The book covers foundations of linear control systems, their raison detre, different types, modelling, representations, computations, stability concepts, tools for time-domain and frequency-domain analysis and synthesis, and fundamental limitations, with an emphasis on frequency-domain methods. Every chapter includes a part on further readings where more advanced topics and pertinent references are introduced for further studies. The presentation is theoretically firm, contemporary, and self-contained. Appendices cover Laplace transform and differential equations, dynamics, MATLAB and SIMULINK, treatise on stability concepts and tools, treatise on Routh-Hurwitz method, random optimization techniques as well as convex and non-convex problems, and sample midterm and endterm exams. The book is divided to the sequel 3 parts plus appendices. PART I: In this part of the book, chapters 1-5, we present foundations of linear control systems. This includes: the introduction to control systems, their raison detre, their different types, modelling of control systems, different methods for their representation and fundamental computations, basic stability concepts and tools for both analysis and design, basic time domain analysis and design details, and the root locus as a stability analysis and synthesis tool. PART II: In this part of the book, Chapters 6-9, we present what is generally referred to as the frequency domain methods. This refers to the experiment of applying a sinusoidal input to the system and studying its output. There are basically three different methods for representation and studying of the data of the aforementioned frequency response experiment: these are the Nyquist plot, the Bode diagram, and the Krohn-Manger-Nichols chart. We study these methods in details. We learn that the output is also a sinusoid with the same frequency but generally with different phase and magnitude. By dividing the output by the input we obtain the so-called sinusoidal or frequency transfer function of the system which is the same as the transfer function when the Laplace variable s is substituted with . Finally we use the Bode diagram for the design process. PART III: In this part, Chapter 10, we introduce some miscellaneous advanced topics under the theme fundamental limitations which should be included in this undergraduate course at least in an introductory level. We make bridges between some seemingly disparate aspects of a control system and theoretically complement the previously studied subjects. Appendices: The book contains seven appendices. Appendix A is on the Laplace transform and differential equations. Appendix B is an introduction to dynamics. Appendix C is an introduction to MATLAB, including SIMULINK. Appendix D is a survey on stability concepts and tools. A glossary and road map of the available stability concepts and tests is provided which is missing even in the research literature. Appendix E is a survey on the Routh-Hurwitz method, also missing in the literature. Appendix F is an introduction to random optimization techniques and convex and non-convex problems. Finally, appendix G presents sample midterm and endterm exams, which are class-tested several times.




Feedback Systems


Book Description

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory




Introduction to Statistical Process Control


Book Description

An Introduction to the Fundamentals and History of Control Charts, Applications, and Guidelines for Implementation Introduction to Statistical Process Control examines various types of control charts that are typically used by engineering students and practitioners. This book helps readers develop a better understanding of the history, implementation, and use-cases. Students are presented with varying control chart techniques, information, and roadmaps to ensure their control charts are operating efficiently and producing specification-confirming products. This is the essential text on the theories and applications behind statistical methods and control procedures. This eight-chapter reference breaks information down into digestible sections and covers topics including: ● An introduction to the basics as well as a background of control charts ● Widely used and newly researched attributes of control charts, including guidelines for implementation ● The process capability index for both normal and non-normal distribution via the sampling of multiple dependent states ● An overview of attribute control charts based on memory statistics ● The development of control charts using EQMA statistics For a solid understanding of control methodologies and the basics of quality assurance, Introduction to Statistical Process Control is a definitive reference designed to be read by practitioners and students alike. It is an essential textbook for those who want to explore quality control and systems design.




Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems


Book Description

In the early 1970s, fuzzy systems and fuzzy control theories added a new dimension to control systems engineering. From its beginnings as mostly heuristic and somewhat ad hoc, more recent and rigorous approaches to fuzzy control theory have helped make it an integral part of modern control theory and produced many exciting results. Yesterday's "art




Optimal Control Theory


Book Description

Upper-level undergraduate text introduces aspects of optimal control theory: dynamic programming, Pontryagin's minimum principle, and numerical techniques for trajectory optimization. Numerous figures, tables. Solution guide available upon request. 1970 edition.




Introduction to Process Control


Book Description

Introduction to Process Control, Third Edition continues to provide a bridge between traditional and modern views of process control by blending conventional topics with a broader perspective of integrated process operation, control, and information systems. Updated and expanded throughout, this third edition addresses issues highly relevant to today’s teaching of process control: Discusses smart manufacturing, new data preprocessing techniques, and machine learning and artificial intelligence concepts that are part of current smart manufacturing decisions Includes extensive references to guide the reader to the resources needed to solve modeling, classification, and monitoring problems Introduces the link between process optimization and process control (optimizing control), including the effect of disturbances on the optimal plant operation, the concepts of steady-state and dynamic back-off as ways to quantify the economic benefits of control, and how to determine an optimal transition policy during a planned production change Incorporates an introduction to the modern architectures of industrial computer control systems with real case studies and applications to pilot-scale operations Analyzes the expanded role of process control in modern manufacturing, including model-centric technologies and integrated control systems Integrates data processing/reconciliation and intelligent monitoring in the overall control system architecture Drawing on the authors’ combined 60 years of teaching experiences, this classroom-tested text is designed for chemical engineering students but is also suitable for industrial practitioners who need to understand key concepts of process control and how to implement them. The text offers a comprehensive pedagogical approach to reinforce learning and presents a concept first followed by an example, allowing students to grasp theoretical concepts in a practical manner and uses the same problem in each chapter, culminating in a complete control design strategy. A vast number of exercises throughout ensure readers are supported in their learning and comprehension. Downloadable MATLAB® toolboxes for process control education as well as the main simulation examples from the book offer a user-friendly software environment for interactively studying the examples in the text. These can be downloaded from the publisher’s website. Solutions manual is available for qualifying professors from the publisher.