Introduction to Environmental Soil Physics


Book Description

An abridged, student-oriented edition of Hillel's earlier published Environmental Soil Physics, Introduction to Environmental Soil Physics is a more succinct elucidation of the physical principles and processes governing the behavior of soil and the vital role it plays in both natural and managed ecosystems. The textbook is self-contained and self-explanatory, with numerous illustrations and sample problems. Based on sound fundamental theory, the textbook leads to a practical consideration of soil as a living system in nature and illustrates the influences of human activity upon soil structure and function. Students, as well as other readers, will better understand the importance of soils and the pivotal possition they occupy with respect to careful and knowledgeable conservation. - Written in an engaging and clear style, posing and resolving issues relevant to the terrestrial environment - Explores the gamut of the interactions among the phases in the soil and the dynamic interconnection of the soil with the subterranean and atmospheric domains - Reveals the salient ideas, approaches, and methods of environmental soil physics - Includes numerous illustrative exercises, which are explicitly solved - Designed to serve for classroom and laboratory instruction, for self-study, and for reference - Oriented toward practical problems in ecology, field-scale hydrology, agronomy, and civil engineering - Differs from earlier texts in its wider scope and holistic environmental conception




Introduction to Soil Physics


Book Description

This book is a unified, condensed, and simplified version of the recently issued twin volumes, Fundamentals of Soil Physics and Applications of Soil Physics. Nonessential topics and complexities have been deleted, and little prior knowledge of the subject is assumed. An effort has been made to provide an elementary, readable, and self-sustaining description of the soil's physical properties and of the manner in which these properties govern the processes taking place in the field. Consideration is given to the ways in which the soil's processes can be influenced, for better or for worse, by man. Sample problems are provided in an attempt to illustrate how the abstract principles embodied in mathematical equations can be applied in practice. The author hope that the present version will be more accessible to students than its precursors and that it might serve to arouse their interest in the vital science of soil physics.




Introduction to Soil Physics


Book Description

The study of the physical properties and physical processes of the soil is under the domain of soil physics. It is a multidisciplinary science that integrates the principles of physics, physical chemistry, meteorology and engineering for the study of soil components, their phases and dynamics. Such investigations drive solutions to problems in agriculture, ecology and engineering. This textbook is a compilation of chapters that discuss the most vital concepts in the field of soil physics. Different approaches, evaluations and methodologies have been included in this book. As this field is emerging at a rapid pace, the contents of this book will help the readers understand the modern concepts and applications of the subject.




Soil Physics with BASIC


Book Description

This book covers material taught in a graduate-level soil physics course at Washington State University. While most soil physics courses dwell mainly on deriving rather than solving the differential equations for transport, the author's approach is to focus on solutions. Graduate students in agricultural and biological sciences usually have a good working knowledge of algebra and calculus, but not of differential equations. In order to teach methods for solving very difficult differential equations with difficult boundary conditions using fairly simple mathematical tools, the author uses numerical procedures on microcomputers to solve the differential equations. Numerical methods convert differential equations into algebraic equations which can be solved using conventional methods of linear algebra.This book reflects the philosophy used in the course. Each chapter introduces soil physics concepts, generally in the conventional way. Most chapters then go on to develop simple computer programs to solve the equations and illustrate the points made in the discussion. Problems at the end of each chapter help the reader practice using the concepts introduced in the chapter. The problems and computer programs are an integral part of the presentation, and readers are strongly encouraged to experiment with each model until both the working of the model and the concepts it teaches are familiar. Although the programs are generally short and relatively simple, they are suitable for use as submodels in large, general-purpose models of the soil-plant-atmosphere system, and have been used in this way by the author and by several of his students.Teachers and students alike will welcome this new textbook. It will enable graduate students to understand and solve transport problems which exist in field situations, and will provide them with a good working knowledge of soil physics - fundamental to so many other areas in soil, plant and engineering sciences.




Soil Physics


Book Description

Designed for undergraduate and graduate students, this book covers important soil physical properties, critical physical processes involving energy and mass transport, movement and retention of water and solutes through soil profile, soil temperature regimes and aeration, and plant-water relations. It includes new concepts and numerical examples fo




Essential Soil Physics


Book Description

Soils are the porous skin of the Earth with variable and complex structures composed of solid, liquid and gaseous phases. This textbook (based on the 4th, German language edition) introduces the reader gently but comprehensively to soil physical processes. The authors discuss both the origin and dynamics of soil physical properties and functions -- including volume-mass relations of the solid, water and gas phases, grain and pore size distributions, permeability and storage capacity for water, gases and heat -- and finally soil deformation and strength in relation to mechanical and hydraulic stresses resulting in structural changes through compaction, kneading, slaking and soil crusting.




Applied Soil Physics


Book Description




Environmental Soil Physics


Book Description

Environmental Soil Physics is a completely updated and modified edition of the Daniel Hillels previous, successful books, Introduction to Soil Physics and Fundamentals of Soil Physics. Hillel is a Pulitzer Prize-winning author, one of the true leaders in the field of environmental sciences. The new version includes a chapter and problems on computational techniques, addresses current environmental concerns and trends. - Updates and expands the scope of Hillel's prior works, Fundamentals of Soil Physics (1980)and Applications of Soil Physics (1980) - Explores the wide range of interactions among the phases in the soil and the dynamic interconnections of the soil with the subterranean and atmospheric domains - Draws attention to historical and contemporary issues concerning the human management of soil and water resources - Directs readers toward solution of practical problems in terrestrial ecology, field-scale hydrology, agronomy, and civil engineering - Incorporates contributions by leading scientists in the areas of spatial variability, soil remediation, and the inclusion of land-surface processes in global climate models




Soil Physics with HYDRUS


Book Description

Numerical models have become much more efficient, making their application to problems increasingly widespread. User-friendly interfaces make the setup of a model much easier and more intuitive while increased computer speed can solve difficult problems in a matter of minutes. Co-authored by the software’s creator, Dr. Jirka Šimůnek, Soil Physics with HYDRUS: Modeling and Applications demonstrates one- and two-dimensional simulations and computer animations of numerical models using the HYDRUS software. Classroom-tested at the University of Georgia by Dr. David Radcliffe, this volume includes numerous examples and homework problems. It provides students with access to the HYDRUS-1D program as well as the Rosetta Module, which contains large volumes of information on the hydraulic properties of soils. The authors use HYDRUS-1D for problems that demonstrate infiltration, evaporation, and percolation of water through soils of different textures and layered soils. They also use it to show heat flow and solute transport in these systems, including the effect of physical and chemical nonequilibrium conditions. The book includes examples of two-dimensional flow in fields, hillslopes, boreholes, and capillary fringes using HYDRUS (2D/3D). It demonstrates the use of two other software packages, RETC and STANMOD, that complement the HYDRUS series. Hands-on use of the windows-based codes has proven extremely effective when learning the principles of water and solute movement, even for users with very little direct knowledge of soil physics and related disciplines and with limited mathematical expertise. Suitable for teaching an undergraduate or lower level graduate course in soil physics or vadose zone hydrology, the text can also be used for self-study on how to use the HYDRUS models. With the information in this book, you can run models for different scenarios and with different parameters, and thus gain a better understanding of the physics of water flow and contaminant transport.




Soil Physics with Python


Book Description

This innovative study presents concepts and problems in soil physics, and provides solutions using original computer programs. It provides a close examination of physical environments of soil, including an analysis of the movement of heat, water and gases. The authors employ the programminglanguage Python, which is now widely used for numerical problem solving in the sciences. In contrast to the majority of the literature on soil physics, this text focuses on solving, not deriving, differential equations for transport. Using numerical procedures to solve differential equations allowsthe solution of quite difficult problems with fairly simple mathematical tools. Numerical methods convert differential into algebraic equations, which can be solved using conventional methods of linear algebra. Each chapter introduces a soil physics concept, and proceeds to develop computer programsto solve the equations and illustrate the points made in the discussion.Problems at the end of each chapter help the reader practise using the concepts introduced. The text is suitable for advanced undergraduates, graduates and researchers of soil physics. It employs an open source philosophy where computer code is presented, explained and discussed, and provides thereader with a full understanding of the solutions. Once mastered, the code can be adapted and expanded for the user's own models, fostering further developments. The Python tools provide a simple syntax, Object Oriented Programming techniques, powerful mathematical and numerical tools, and a userfriendly environment.