An Introduction to Statistical Modelling


Book Description

Statisticians rely heavily on making models of 'causal situations' in order to fully explain and predict events. Modelling therefore plays a vital part in all applications of statistics and is a component of most undergraduate programmes. 'An Introduction to Statistical Modelling' provides a single reference with an applied slant that caters for all three years of a degree course. The book concentrates on core issues and only the most essential mathematical justifications are given in detail. Attention is firmly focused on the statistical aspects of the techniques, in this lively, practical approach.




Introduction to Statistical Modelling


Book Description

This book is about generalized linear models as described by NeIder and Wedderburn (1972). This approach provides a unified theoretical and computational framework for the most commonly used statistical methods: regression, analysis of variance and covariance, logistic regression, log-linear models for contingency tables and several more specialized techniques. More advanced expositions of the subject are given by McCullagh and NeIder (1983) and Andersen (1980). The emphasis is on the use of statistical models to investigate substantive questions rather than to produce mathematical descriptions of the data. Therefore parameter estimation and hypothesis testing are stressed. I have assumed that the reader is familiar with the most commonly used statistical concepts and methods and has some basic knowledge of calculus and matrix algebra. Short numerical examples are used to illustrate the main points. In writing this book I have been helped greatly by the comments and criticism of my students and colleagues, especially Anne Young. However, the choice of material, and the obscurities and errors are my responsibility and I apologize to the reader for any irritation caused by them. For typing the manuscript under difficult conditions I am grateful to Anne McKim, Jan Garnsey, Cath Claydon and Julie Latimer.




An Introduction to Statistical Modeling of Extreme Values


Book Description

Directly oriented towards real practical application, this book develops both the basic theoretical framework of extreme value models and the statistical inferential techniques for using these models in practice. Intended for statisticians and non-statisticians alike, the theoretical treatment is elementary, with heuristics often replacing detailed mathematical proof. Most aspects of extreme modeling techniques are covered, including historical techniques (still widely used) and contemporary techniques based on point process models. A wide range of worked examples, using genuine datasets, illustrate the various modeling procedures and a concluding chapter provides a brief introduction to a number of more advanced topics, including Bayesian inference and spatial extremes. All the computations are carried out using S-PLUS, and the corresponding datasets and functions are available via the Internet for readers to recreate examples for themselves. An essential reference for students and researchers in statistics and disciplines such as engineering, finance and environmental science, this book will also appeal to practitioners looking for practical help in solving real problems. Stuart Coles is Reader in Statistics at the University of Bristol, UK, having previously lectured at the universities of Nottingham and Lancaster. In 1992 he was the first recipient of the Royal Statistical Society's research prize. He has published widely in the statistical literature, principally in the area of extreme value modeling.




Statistical Models


Book Description

This lively and engaging book explains the things you have to know in order to read empirical papers in the social and health sciences, as well as the techniques you need to build statistical models of your own. The discussion in the book is organized around published studies, as are many of the exercises. Relevant journal articles are reprinted at the back of the book. Freedman makes a thorough appraisal of the statistical methods in these papers and in a variety of other examples. He illustrates the principles of modelling, and the pitfalls. The discussion shows you how to think about the critical issues - including the connection (or lack of it) between the statistical models and the real phenomena. The book is written for advanced undergraduates and beginning graduate students in statistics, as well as students and professionals in the social and health sciences.




Statistical Modelling for Social Researchers


Book Description

This book introduces social researchers to all aspects of statistical modelling in an easily accessible but informative way. A website will accompany the book which will provide additional information and exercises. It is the first text to introduce the social researcher to the principles of statistical modelling and to the full range of methods available. This book describes in words rather than mathematical notation the aims and principles of statistical modelling but helpfully remains fully comprehensive.




Introduction to Statistical Methods for Financial Models


Book Description

This book provides an introduction to the use of statistical concepts and methods to model and analyze financial data. The ten chapters of the book fall naturally into three sections. Chapters 1 to 3 cover some basic concepts of finance, focusing on the properties of returns on an asset. Chapters 4 through 6 cover aspects of portfolio theory and the methods of estimation needed to implement that theory. The remainder of the book, Chapters 7 through 10, discusses several models for financial data, along with the implications of those models for portfolio theory and for understanding the properties of return data. The audience for the book is students majoring in Statistics and Economics as well as in quantitative fields such as Mathematics and Engineering. Readers are assumed to have some background in statistical methods along with courses in multivariate calculus and linear algebra.




An Introduction to Statistical Learning


Book Description

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.




Statistical Modeling for Biomedical Researchers


Book Description

A second edition of the easy-to-use standard text guiding biomedical researchers in the use of advanced statistical methods.




Introduction to Linear Models and Statistical Inference


Book Description

A multidisciplinary approach that emphasizes learning by analyzing real-world data sets This book is the result of the authors' hands-on classroom experience and is tailored to reflect how students best learn to analyze linear relationships. The text begins with the introduction of four simple examples of actual data sets. These examples are developed and analyzed throughout the text, and more complicated examples of data sets are introduced along the way. Taking a multidisciplinary approach, the book traces the conclusion of the analyses of data sets taken from geology, biology, economics, psychology, education, sociology, and environmental science. As students learn to analyze the data sets, they master increasingly sophisticated linear modeling techniques, including: * Simple linear models * Multivariate models * Model building * Analysis of variance (ANOVA) * Analysis of covariance (ANCOVA) * Logistic regression * Total least squares The basics of statistical analysis are developed and emphasized, particularly in testing the assumptions and drawing inferences from linear models. Exercises are included at the end of each chapter to test students' skills before moving on to more advanced techniques and models. These exercises are marked to indicate whether calculus, linear algebra, or computer skills are needed. Unlike other texts in the field, the mathematics underlying the models is carefully explained and accessible to students who may not have any background in calculus or linear algebra. Most chapters include an optional final section on linear algebra for students interested in developing a deeper understanding. The many data sets that appear in the text are available on the book's Web site. The MINITAB(r) software program is used to illustrate many of the examples. For students unfamiliar with MINITAB(r), an appendix introduces the key features needed to study linear models. With its multidisciplinary approach and use of real-world data sets that bring the subject alive, this is an excellent introduction to linear models for students in any of the natural or social sciences.




Information and Complexity in Statistical Modeling


Book Description

No statistical model is "true" or "false," "right" or "wrong"; the models just have varying performance, which can be assessed. The main theme in this book is to teach modeling based on the principle that the objective is to extract the information from data that can be learned with suggested classes of probability models. The intuitive and fundamental concepts of complexity, learnable information, and noise are formalized, which provides a firm information theoretic foundation for statistical modeling. Although the prerequisites include only basic probability calculus and statistics, a moderate level of mathematical proficiency would be beneficial.