Introduction to Statistics and Data Analysis


Book Description

Now in its second edition, this introductory statistics textbook conveys the essential concepts and tools needed to develop and nurture statistical thinking. It presents descriptive, inductive and explorative statistical methods and guides the reader through the process of quantitative data analysis. This revised and extended edition features new chapters on logistic regression, simple random sampling, including bootstrapping, and causal inference. The text is primarily intended for undergraduate students in disciplines such as business administration, the social sciences, medicine, politics, and macroeconomics. It features a wealth of examples, exercises and solutions with computer code in the statistical programming language R, as well as supplementary material that will enable the reader to quickly adapt the methods to their own applications.







Introduction to Statistics and Data Analysis


Book Description

INTRODUCTION TO STATISTICS AND DATA ANALYSIS introduces you to the study of statistics and data analysis by using real data and attention-grabbing examples. The authors guide you through an intuition-based learning process that stresses interpretation and communication of statistical information. Simple notation--including frequent substitution of words for symbols--helps you grasp concepts and cement your comprehension. You'll also find coverage of most major technologies as a problem-solving tool, plus hands-on activities in each chapter that allow you to practice statistics firsthand.




An Introduction to Statistics and Data Analysis Using Stata®


Book Description

An Introduction to Statistics and Data Analysis Using Stata® by Lisa Daniels and Nicholas Minot provides a step-by-step introduction for statistics, data analysis, or research methods classes with Stata. Concise descriptions emphasize the concepts behind statistics for students rather than the derivations of the formulas. With real-world examples from a variety of disciplines and extensive detail on the commands in Stata, this text provides an integrated approach to research design, statistical analysis, and report writing for social science students.




Introduction to Statistics


Book Description

Using a truly accessible and reader-friendly approach, Introduction to Statistics: Fundamental Concepts and Procedures of Data Analysis, by Howard M. Reid, redefines the way statistics can be taught and learned. Unlike other books that merely focus on procedures, Reid’s approach balances development of critical thinking skills with application of those skills to contemporary statistical analysis. He goes beyond simply presenting techniques by focusing on the key concepts readers need to master in order to ensure their long-term success. Indeed, this exciting new book offers the perfect foundation upon which readers can build as their studies and careers progress to more advanced forms of statistics. Keeping computational challenges to a minimum, Reid shows readers not only how to conduct a variety of commonly used statistical procedures, but also when each procedure should be utilized and how they are related. Following a review of descriptive statistics, he begins his discussion of inferential statistics with a two-chapter examination of the Chi Square test to introduce students to hypothesis testing, the importance of determining effect size, and the need for post hoc tests. When more complex procedures related to interval/ratio data are covered, students already have a solid understanding of the foundational concepts involved. Exploring challenging topics in an engaging and easy-to-follow manner, Reid builds concepts logically and supports learning through robust pedagogical tools, the use of SPSS, numerous examples, historical quotations, insightful questions, and helpful progress checks.




An Introduction to Statistical Genetic Data Analysis


Book Description

A comprehensive introduction to modern applied statistical genetic data analysis, accessible to those without a background in molecular biology or genetics. Human genetic research is now relevant beyond biology, epidemiology, and the medical sciences, with applications in such fields as psychology, psychiatry, statistics, demography, sociology, and economics. With advances in computing power, the availability of data, and new techniques, it is now possible to integrate large-scale molecular genetic information into research across a broad range of topics. This book offers the first comprehensive introduction to modern applied statistical genetic data analysis that covers theory, data preparation, and analysis of molecular genetic data, with hands-on computer exercises. It is accessible to students and researchers in any empirically oriented medical, biological, or social science discipline; a background in molecular biology or genetics is not required. The book first provides foundations for statistical genetic data analysis, including a survey of fundamental concepts, primers on statistics and human evolution, and an introduction to polygenic scores. It then covers the practicalities of working with genetic data, discussing such topics as analytical challenges and data management. Finally, the book presents applications and advanced topics, including polygenic score and gene-environment interaction applications, Mendelian Randomization and instrumental variables, and ethical issues. The software and data used in the book are freely available and can be found on the book's website.




Introduction to Statistics and Data Analysis


Book Description

In Introduction to Statistics and Data Analysis, Bob Lockhart emphasizes the link between statistical techniques and scientific discovery by focusing on evaluation and comparison of models. It is an intuitive view of statistics that views all methods as variants on a basic theme (evaluating models). Lockhart's realistic approach enables students to examine and question the methods and goals of statistics and to draw clear connections between statistical methods and the research process.




An Introduction to Statistical Learning


Book Description

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.




Introduction to Statistical Data Analysis for the Life Sciences


Book Description

A Hands-On Approach to Teaching Introductory StatisticsExpanded with over 100 more pages, Introduction to Statistical Data Analysis for the Life Sciences, Second Edition presents the right balance of data examples, statistical theory, and computing to teach introductory statistics to students in the life sciences. This popular textbook covers the m