Modern Statistics for the Social and Behavioral Sciences


Book Description

In addition to learning how to apply classic statistical methods, students need to understand when these methods perform well, and when and why they can be highly unsatisfactory. Modern Statistics for the Social and Behavioral Sciences illustrates how to use R to apply both standard and modern methods to correct known problems with classic techniques. Numerous illustrations provide a conceptual basis for understanding why practical problems with classic methods were missed for so many years, and why modern techniques have practical value. Designed for a two-semester, introductory course for graduate students in the social sciences, this text introduces three major advances in the field: Early studies seemed to suggest that normality can be assumed with relatively small sample sizes due to the central limit theorem. However, crucial issues were missed. Vastly improved methods are now available for dealing with non-normality. The impact of outliers and heavy-tailed distributions on power and our ability to obtain an accurate assessment of how groups differ and variables are related is a practical concern when using standard techniques, regardless of how large the sample size might be. Methods for dealing with this insight are described. The deleterious effects of heteroscedasticity on conventional ANOVA and regression methods are much more serious than once thought. Effective techniques for dealing heteroscedasticity are described and illustrated. Requiring no prior training in statistics, Modern Statistics for the Social and Behavioral Sciences provides a graduate-level introduction to basic, routinely used statistical techniques relevant to the social and behavioral sciences. It describes and illustrates methods developed during the last half century that deal with known problems associated with classic techniques. Espousing the view that no single method is always best, it imparts a general understanding of the relative merits of various techniques so that the choice of method can be made in an informed manner.




Fundamental Statistics for the Social and Behavioral Sciences


Book Description

Fundamental Statistics for the Social and Behavioral Sciences, Second Edition, places statistics within the research process, illustrating how they are used to answer questions and test ideas. Students learn not only how to calculate statistics, but also how to interpret and communicate the results of statistical analyses in light of a study’s research hypothesis. Featuring accessible writing and well-integrated research examples, the book gives students a greater understanding of how research studies are conceived, conducted, and communicated. The Second Edition includes a new chapter on regression; covers how collected data can be organized, presented and summarized; the process of conducting statistical analyses to test research questions, hypotheses, and issues/controversies; and examines statistical procedures used in research situations that vary in the number of independent variables in the study. Every chapter includes learning checks, such as review questions and summary boxes, to reinforce the content students just learned, and exercises at the end of every chapter help assess their knowledge. Also new to the Second Edition -- animated video tutorials!




Introductory Statistics for the Behavioral Sciences


Book Description

This mid-level book introduces and explains statistical concepts and principles clearly, assuming minimal mathematical sophistication but avoiding a "cookbook" approach. The book also presents a broader outlook on hypothesis testing by including such often-neglected concepts as statistical power, indices and other techniques.




Modern Statistics for the Social and Behavioral Sciences


Book Description

Requiring no prior training, Modern Statistics for the Social and Behavioral Sciences provides a two-semester, graduate-level introduction to basic statistical techniques that takes into account recent advances and insights that are typically ignored in an introductory course. Hundreds of journal articles make it clear that basic techniques, routinely taught and used, can perform poorly when dealing with skewed distributions, outliers, heteroscedasticity (unequal variances) and curvature. Methods for dealing with these concerns have been derived and can provide a deeper, more accurate and more nuanced understanding of data. A conceptual basis is provided for understanding when and why standard methods can have poor power and yield misleading measures of effect size. Modern techniques for dealing with known concerns are described and illustrated. Features: Presents an in-depth description of both classic and modern methods Explains and illustrates why recent advances can provide more power and a deeper understanding of data Provides numerous illustrations using the software R Includes an R package with over 1300 functions Includes a solution manual giving detailed answers to all of the exercises This second edition describes many recent advances relevant to basic techniques. For example, a vast array of new and improved methods is now available for dealing with regression, including substantially improved ANCOVA techniques. The coverage of multiple comparison procedures has been expanded and new ANOVA techniques are described. Rand Wilcox is a professor of psychology at the University of Southern California. He is the author of 13 other statistics books and the creator of the R package WRS. He currently serves as an associate editor for five statistics journals. He is a fellow of the Association for Psychological Science and an elected member of the International Statistical Institute.




Social and Behavioral Statistics


Book Description

Revised and updated to include the behavioral sciences, the second edition of this introductory statistics book engages students with real-world examples and exercises. To the dismay of many social and behavioral science majors, successfully passing a statistics course in sociology, psychology, and most other social/behavioral science programs is required, and at many institutions statistics is becoming a university-wide requirement. In this newly revised text, the authors continue to make use of their proven stress-busting approach to teaching statistics to self-describe math phobic students. This book uses humorous examples and step-by-step presentations of statistical procedures to illustrate what are often complex and hard-to-grasp statistical concepts. Students and instructors will find this text to be a helpful, easy to interpret and thoroughly comprehensive introduction to social and behavioral statistics. Perfect for social and behavioral sciences upper-level undergrads fearful of that required stats course. It uses stress-busting features like cartoons and real-world examples to illustrate what are often complex and hard-to-grasp statistical concepts. Includes the newest and most necessary tools for students to master statistical skills making handouts or additional books unnecessary and gives instructors and their students a compact and affordable main text for their introductory stats courses.




Statistics for the Behavioural Sciences


Book Description

Do you find statistics overwhelming and confusing? Have you ever wished for someone to explain the basics in a clear and easy-to-follow style? This accessible textbook gives a step-by-step introduction to all the topics covered in introductory statistics courses for the behavioural sciences, with plenty of examples discussed in depth, based on real psychology experiments utilising the statistical techniques described. Advanced sections are also provided, for those who want to learn a particular topic in more depth. Statistics for the Behavioural Sciences: An Introduction begins with an introduction to the basic concepts, before providing a detailed explanation of basic statistical tests and concepts such as descriptive statistics, probability, the binomial distribution, continuous random variables, the normal distribution, the Chi-Square distribution, the analysis of categorical data, t-tests, correlation and regression. This timely and highly readable text will be invaluable to undergraduate students of psychology, and students of research methods courses in related disciplines, as well as anyone with an interest in the basic concepts and tests associated with statistics in the behavioural sciences.




Statistics for the Behavioral Sciences


Book Description

Nolan and Heinzen’s engaging introduction to statistics has captivated students with its easy readability and vivid examples drawn from everyday life. The mathematics of statistical reasoning are made accessible with careful explanations and a helpful three-tier approach to working through exercises: Clarifying the Concepts, Calculating the Statistics, and Applying the Concepts. New pedagogy, end-of-chapter material, and the groundbreaking learning space StatsPortal give students even more tools to help them master statistics than ever before.




Nonparametric Statistics for Social and Behavioral Sciences


Book Description

Description: Incorporating a hands-on pedagogical approach, Nonparametric Statistics for Social and Behavioral Sciences presents the concepts, principles, and methods used in performing many nonparametric procedures. It also demonstrates practical applications of the most common nonparametric procedures using IBM's SPSS software. This text is the only current nonparametric book written specifically for students in the behavioral and social sciences. Emphasizing sound research designs, appropriate statistical analyses, and accurate interpretations of results, the text: Explains a conceptual framework for each statistical procedure Presents examples of relevant research problems, associated research questions, and hypotheses that precede each procedure Details SPSS paths for conducting various analyses Discusses the interpretations of statistical results and conclusions of the research With minimal coverage of formulas, the book takes a nonmathematical approach to nonparametric data analysis procedures and shows students how they are used in research contexts. Each chapter includes examples, exercises, and SPSS screen shots illustrating steps of the statistical procedures and resulting output.




Introduction to Applied Bayesian Statistics and Estimation for Social Scientists


Book Description

This book outlines Bayesian statistical analysis in great detail, from the development of a model through the process of making statistical inference. The key feature of this book is that it covers models that are most commonly used in social science research - including the linear regression model, generalized linear models, hierarchical models, and multivariate regression models - and it thoroughly develops each real-data example in painstaking detail.




Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences


Book Description

Guides readers through the quantitative data analysis process including contextualizing data within a research situation, connecting data to the appropriate statistical tests, and drawing valid conclusions Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences presents a clear and accessible introduction to the basics of quantitative data analysis and focuses on how to use statistical tests as a key tool for analyzing research data. The book presents the entire data analysis process as a cyclical, multiphase process and addresses the processes of exploratory analysis, decision-making for performing parametric or nonparametric analysis, and practical significance determination. In addition, the author details how data analysis is used to reveal the underlying patterns and relationships between the variables and connects those trends to the data’s contextual situation. Filling the gap in quantitative data analysis literature, this book teaches the methods and thought processes behind data analysis, rather than how to perform the study itself or how to perform individual statistical tests. With a clear and conversational style, readers are provided with a better understanding of the overall structure and methodology behind performing a data analysis as well as the needed techniques to make informed, meaningful decisions during data analysis. The book features numerous data analysis examples in order to emphasize the decision and thought processes that are best followed, and self-contained sections throughout separate the statistical data analysis from the detailed discussion of the concepts allowing readers to reference a specific section of the book for immediate solutions to problems and/or applications. Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences also features coverage of the following: • The overall methodology and research mind-set for how to approach quantitative data analysis and how to use statistics tests as part of research data analysis • A comprehensive understanding of the data, its connection to a research situation, and the most appropriate statistical tests for the data • Numerous data analysis problems and worked-out examples to illustrate the decision and thought processes that reveal underlying patterns and trends • Detailed examples of the main concepts to aid readers in gaining the needed skills to perform a full analysis of research problems • A conversational tone to effectively introduce readers to the basics of how to perform data analysis as well as make meaningful decisions during data analysis Introduction to Quantitative Data Analysis in the Behavioral and Social Sciences is an ideal textbook for upper-undergraduate and graduate-level research method courses in the behavioral and social sciences, statistics, and engineering. This book is also an appropriate reference for practitioners who require a review of quantitative research methods. Michael J. Albers, Ph.D., is Professor in the Department of English at East Carolina University. His research interests include information design with a focus on answering real-world questions, the presentation of complex information, and human–information interaction. Dr. Albers received his Ph.D. in Technical Communication and Rhetoric from Texas Tech University.