Physics of Highly Charged Ions


Book Description

The physics of highly charged ions has become an essential ingredient of many modern research fields, such as x-ray astronomy and astrophysics, con trolled thermonuclear fusion, heavy ion nuclear physics, charged particle ac celerator physics, beam-foil spectroscopy, creation of xuv and x-ray lasers, etc. A broad spectrum of phenomena in high-temperature laboratory and astrophysical plasmas, as well as many aspects of their global physical state and behaviour, are directly influenced, and often fully determined, by the structure and collision properties of multiply charged ions. The growth of in terest in the physics of highly charged ions, experienced especially in the last ten to fifteen years, has stimulated a dramatic increase in research activity in this field and resulted in numerous significant achievements of both fun damental and practical importance. This book is devoted to the basic aspects of the physics of highly charged ions. Its principal aim is to provide a basis for understanding the structure and spectra of these ions, as well as their interactions with other atomic par ticles (electrons, ions, atoms and molecules). Particular attention is paid to the presentation of theoretical methods for the description of different radi ative and collision phenomena involving multiply charged ions. The exper imental material is included only to illustrate the validity of theoretical methods or to demonstrate those physical phenomena for which adequate theoretical descriptions are still absent. The general principles of atomic spectroscopy are included to the extent to which they are pertinent to the subject matter.




Introduction to the Physics of Highly Charged Ions


Book Description

Emphasizing a physical understanding with many illustrations, Introduction to the Physics of Highly Charged Ions covers the major areas of x-ray radiation and elementary atomic processes occurring with highly charged ions in hot laboratory and astrophysical plasmas. Topics include light and ion sources, spectroscopy, atomic structure, magnetic and




Introduction to the Physics of Highly Charged Ions


Book Description

Emphasizing a physical understanding with many illustrations, Introduction to the Physics of Highly Charged Ions covers the major areas of x-ray radiation and elementary atomic processes occurring with highly charged ions in hot laboratory and astrophysical plasmas. Topics include light and ion sources, spectroscopy, atomic structure, magnetic and QED effects, and a thorough look at atomic collisions, from elementary processes in plasmas to ion-surface interaction and hollow atoms. Avoiding unnecessary mathematical details, this book is accessible to a broad range of readers, including graduate students and researchers.







Trapping Highly Charged Ions


Book Description

This book provides and elementary introduction to the field of trapping highly charged ions. The first group of chapters is intended to describe the various sorts of highly charged ion traps: EBIT, EBIS, ECR, Storage Rings and various speciality traps. The authors focus on their own ion trap facilities in order to teach by example. The chapters range in scope from comprehensive reviews to brief introductions. The second group of chapters is intended to give a flavour of the various sorts of scientific research which are presently being carried out with traps for highly charged ions. These chapters not only inform, but also stimulate newcomers to think up fresh ideas. The articles in this second group generally fall into one of three broad categories: atomic structure experiments, ion-surface interactions and precision mass spectrometry. The third group of chapters is intended to deal with theory and spectroscopic analysis. It provides some of the background material necessary to make sense of observed phenomenology, to allow detailed explanation of experimental data, and to sensibly plan further experimentation. An appendix provides a complete keyword-annotated bibliography of pa




An Assessment of U.S.-Based Electron-Ion Collider Science


Book Description

Understanding of protons and neutrons, or "nucleons"â€"the building blocks of atomic nucleiâ€"has advanced dramatically, both theoretically and experimentally, in the past half century. A central goal of modern nuclear physics is to understand the structure of the proton and neutron directly from the dynamics of their quarks and gluons governed by the theory of their interactions, quantum chromodynamics (QCD), and how nuclear interactions between protons and neutrons emerge from these dynamics. With deeper understanding of the quark-gluon structure of matter, scientists are poised to reach a deeper picture of these building blocks, and atomic nuclei themselves, as collective many-body systems with new emergent behavior. The development of a U.S. domestic electron-ion collider (EIC) facility has the potential to answer questions that are central to completing an understanding of atoms and integral to the agenda of nuclear physics today. This study assesses the merits and significance of the science that could be addressed by an EIC, and its importance to nuclear physics in particular and to the physical sciences in general. It evaluates the significance of the science that would be enabled by the construction of an EIC, its benefits to U.S. leadership in nuclear physics, and the benefits to other fields of science of a U.S.-based EIC.




Introduction to Relativistic Heavy Ion Physics


Book Description

This book attempts to cover the fascinating field of physics of relativistic heavy ions, mainly from the experimentalist's point of view. After the introductory chapter on quantum chromodynamics, basic properties of atomic nuclei, sources of relativistic nuclei, and typical detector set-ups are described in three subsequent chapters. Experimental facts on collisions of relativistic heavy ions are systematically presented in 15 consecutive chapters, starting from the simplest features like cross sections, multiplicities, and spectra of secondary particles and going to more involved characteristics like correlations, various relatively rare processes, and newly discovered features: collective flow, high pT suppression and jet quenching. Some entirely new topics are included, such as the difference between neutron and proton radii in nuclei, heavy hypernuclei, and electromagnetic effects on secondary particle spectra.Phenomenological approaches and related simple models are discussed in parallel with the presentation of experimental data. Near the end of the book, recent ideas about the new state of matter created in collisions of ultrarelativistic nuclei are discussed. In the final chapter, some predictions are given for nuclear collisions in the Large Hadron Collider (LHC), now in construction at the site of the European Organization for Nuclear Research (CERN), Geneva. Finally, the appendix gives us basic notions of relativistic kinematics, and lists the main international conferences related to this field. A concise reference book on physics of relativistic heavy ions, it shows the present status of this field.




The Physics of Multiply and Highly Charged Ions


Book Description

Highly charged ions are the most chemically reactive species known to mankind. This reactivity is due to the extremely large potential energy they posses. This textbook deals with the wide range of interactions which occur when such ions interact with other forms of matter, especially solid surfaces and gasses. Particular emphasis is placed on situations where the kinetic energy associated with the interactions is small so that the effects of the high potential energy are most apparent. Experimental and theoretical techniques of investigation are covered in addition to the findings they produce. The treatment aims to be instructive to the beginner while leading on to a level where the newest findings are reviewed. As such the text is suitable for final year undergraduates, postgraduates or experienced researchers.




Introduction to Plasma Physics


Book Description

Introduction to Plasma Physics is the standard text for an introductory lecture course on plasma physics. The text's six sections lead readers systematically and comprehensively through the fundamentals of modern plasma physics. Sections on single-particle motion, plasmas as fluids, and collisional processes in plasmas lay the groundwork for a thorough understanding of the subject. The authors take care to place the material in its historical context for a rich understanding of the ideas presented. They also emphasize the importance of medical imaging in radiotherapy, providing a logical link to more advanced works in the area. The text includes problems, tables, and illustrations as well as a thorough index and a complete list of references.




An Introduction to the Physics of Intense Charged Particle Beams


Book Description

An intense charged particle beam can be characterized as an organized charged particle flow for which the effects of beam self-fields are of major importance in describing the evolution of the flow. Research employing such beams is now a rapidly growing field with important applications ranging from the development of high power sources of coherent radiation to inertial confinement fusion. Major programs have now been established at several laboratories in the United States and Great Britain, as well as in the USSR, Japan, and several Eastern and Western European nations. In addition, related research activities are being pursued at the graduate level at several universities in the US and abroad. When the author first entered this field in 1973 there was no single reference text that provided a broad survey of the important topics, yet contained sufficient detail to be of interest to the active researcher. That situation has persisted, and this book is an attempt to fill the void. As such, the text is aimed at the graduate student, or beginning researcher; however, it contains ample information to be a convenient reference source for the advanced worker.