Introduction to Theoretical Stereochemistry


Book Description

First published in 1991. Routledge is an imprint of Taylor & Francis, an informa company.




Introduction to Stereochemistry


Book Description

Molecular shape, form, and symmetry play a central role in organic chemistry, and this text presents a brief introduction to the conceptual basis of stereochemistry. Its focus lies in the fundamentals of structural stereochemistry, rather than the dynamic aspects that are more relevant to reaction mechanisms. The three-part treatment deals with structure and symmetry, stereoisomerism, and the separation and configuration of stereoisomers. The first section reviews molecular architecture, relating empirical bonding geometries to the hybridization of the central carbon atom. Students receive a nonrigorous treatment of symmetry elements and point groups, with particular focus on the presence or absence of reflection symmetry. The second section classifies stereoisomers according to symmetry properties and to the nature of their barriers; it also discusses the dependence of optical activity on structure and concludes with an examination of topological isomerism. The third and final section explores the conceptual basis of asymmetric syntheses and kinetic resolutions. Each of the major sections features a series of exercises that reinforce and extend the preceding material, and answers are provided. Preface to the Dover edition. Answers to Exercises. Bibliography. Index.




Stereochemistry and Organic Reactions


Book Description

Stereochemistry and Organic Reactions: Conformation, Configuration, Stereoelectronic Effects and Asymmetric Synthesis provides coverage on the stereochemistry of reactions of all mechanistic types, ranging from ionic, pericyclic and transition metal-catalyzed to radical and photochemical. Chapters cover acyclic molecules, cyclic molecules, the stereochemistry of organic reactions, the perturbation molecular orbital theory for the origin of stereoelectronic effects, and an introduction to the principles of stereoselectivity and hierarchical levels of asymmetric synthesis. Each chapter includes problems that reinforce main themes, making it valuable to students, teachers and researchers working in organic, biological and medicinal chemistry, as well as biologists, pharmacologists, polymer chemists and chemists. - Presents a holistic and unified approach to stereochemical understanding and predictions, covering reactions of all mechanistic classes - Includes two background chapters on perturbation theory and stereoselective principles, along with asymmetric designs - Features novel rules and mnemonics to delineate product stereochemistry - Includes up-to-date coverage with over 1300 selective references




Mathematical Stereochemistry


Book Description

Chirality and stereogenicity are closely related concepts and their differentiation and description is still a challenge in chemoinformatics. In his 2015 book, Fujita developed a new stereoisogram approach that provided theoretical framework for mathematical aspects of modern stereochemistry. This new edition includes a new chapter on Computer-Oriented Representations developed by the author based on Groups, Algorithms, Programming (GAP) system.




Stereochemistry of Coordination Compounds


Book Description

This well-illustrated and well-referenced book provides a systematic introduction to the modern aspects of the topographical stereochemistry of coordination compounds, which are made up of metal ions surrounded by other non-metal atoms, ions and molecules.




Orbital Interaction Theory of Organic Chemistry


Book Description

A practical introduction to orbital interaction theory and its applications in modern organic chemistry Orbital interaction theory is a conceptual construct that lies at the very heart of modern organic chemistry. Comprising a comprehensive set of principles for explaining chemical reactivity, orbital interaction theory originates in a rigorous theory of electronic structure that also provides the basis for the powerful computational models and techniques with which chemists seek to describe and exploit the structures and thermodynamic and kinetic stabilities of molecules. Orbital Interaction Theory of Organic Chemistry, Second Edition introduces students to the fascinating world of organic chemistry at the mechanistic level with a thoroughly self-contained, well-integrated exposition of orbital interaction theory and its applications in modern organic chemistry. Professor Rauk reviews the concepts of symmetry and orbital theory, and explains reactivity in common functional groups and reactive intermediates in terms of orbital interaction theory. Aided by numerous examples and worked problems, he guides readers through basic chemistry concepts, such as acid and base strength, nucleophilicity, electrophilicity, and thermal stability (in terms of orbital interactions), and describes various computational models for describing those interactions. Updated and expanded, this latest edition of Orbital Interaction Theory of Organic Chemistry includes a completely new chapter on organometallics, increased coverage of density functional theory, many new application examples, and worked problems. The text is complemented by an interactive computer program that displays orbitals graphically and is available through a link to a Web site. Orbital Interaction Theory of Organic Chemistry, Second Edition is an excellent text for advanced-level undergraduate and graduate students in organic chemistry. It is also a valuable working resource for professional chemists seeking guidance on interpreting the quantitative data produced by modern computational chemists.




Organic Stereochemistry


Book Description

Adopting a novel approach to the topic by combining theoretical knowledge and practical results, this book presents the most popular and useful computational and experimental methods applied for studying the stereochemistry of chemical reactions and compounds. The text is clearly divided into three sections on fundamentals, spectroscopic and computational techniques, and applications in organic synthesis. The first part provides a brief introduction to the field of chirality and stereochemistry, while the second part covers the different methodologies, such as optical rotation, electronic circular dichroism, vibrational circular dicroism, and Raman spectroscopy. The third section then goes on to describe selective examples in organic synthesis, classified by reaction type, i.e. enantioselective, chemoselective and stereoselective reactions. A final chapter on total synthesis of natural products rounds off the book. A valuable reference for researchers in academia and industry working in the field of organic synthesis, computational chemistry, spectroscopy or medicinal chemistry.




Basic Organic Stereochemistry


Book Description

A Practical Introduction to Stereochemistry Stereoisomers are compounds with the same chemical formula and connectivity but with different arrangements of their atoms in 3-dimensional space. Stereochemistry encompasses the study of stereoisomers and their properties. Despite having an identical chemical formula, stereoisomers can have drastically different biological, medicinal, and chemical properties. Basic Organic Stereochemistry explains in clear, concise terms the concepts and properties of stereoisomers. Ideal both as a text for advanced undergraduate or graduate students and as a handy guide for researchers in industry, this superb text covers: * Polarimetry and optical rotation * Internal coordinates, configuration, and conformation * Nature of stereoisomers * Barriers between stereoisomers and residual stereoisomers * Symmetry operators and symmetry point groups * Properties of stereoisomers and stereoisomer discrimination * Separation of stereoisomers, resolution, and racemization Suitable for students in organic and biological chemistry, Basic Organic Stereochemistry is unparalleled as a convenient text.




Electronic Structure and Properties of Transition Metal Compounds


Book Description

With more than 40% new and revised materials, this second edition offers researchers and students in the field a comprehensive understanding of fundamental molecular properties amidst cutting-edge applications. Including ~70 Example-Boxes and summary notes, questions, exercises, problem sets, and illustrations in each chapter, this publication is also suitable for use as a textbook for advanced undergraduate and graduate students. Novel material is introduced in description of multi-orbital chemical bonding, spectroscopic and magnetic properties, methods of electronic structure calculation, and quantum-classical modeling for organometallic and metallobiochemical systems. This is an excellent reference for chemists, researchers and teachers, and advanced undergraduate and graduate students in inorganic, coordination, and organometallic chemistry.




Dynamic Stereochemistry of Chiral Compounds


Book Description

A comprehensive overview of fundamental concepts of asymmetric synthesis along with in-depth discussion. Recent developments that address important synthetic challenges are presented and highlighted with hundreds of examples.