Introductory Circuit Theory


Book Description

This textbook for a one-semester course in Electrical Circuit Theory is written to be concise, understandable, and applicable. Matlab is used throughout, for coding the programs and simulation of the circuits. Every new concept is illustrated with numerous examples and figures, in order to facilitate learning. The simple and clear style of presentation, along with comprehensive coverage, enables students to gain a solid foundation in the subject, along with the ability to apply techniques to real circuit analysis. Written to be accessible to students of varying backgrounds, this textbook presents the analysis of realistic, working circuits Presents concepts in a clear, concise and comprehensive manner, such as the difficult problem of setting up the equilibrium equations of circuits using a systematic approach in a few distinct steps Includes worked examples of functioning circuits, throughout every chapter, with an emphasis on real applications Includes numerous exercises at the end of each chapter Provides program scripts and circuit simulations, using the popular and widely used Matlab software, as supplementary material online




Introductory Circuits


Book Description

Compact but comprehensive, this textbook presents the essential concepts of electronic circuit theory. As well as covering classical linear theory involving resistance, capacitance and inductance it treats practical nonlinear circuits containing components such as operational amplifiers, Zener diodes and exponential diodes. The book’s straightforward approach highlights the similarity between the equations describing direct current (DC), alternating current (AC) and small-signal nonlinear behaviour, thus making the analysis of these circuits easier to comprehend. Introductory Circuits explains: the laws and analysis of DC circuits including those containing controlled sources; AC circuits, focusing on complex currents and voltages, and with extension to frequency domain performance; opamp circuits, including their use in amplifiers and switches; change behaviour within circuits, whether intentional (small-signal performance) or caused by unwanted changes in components. In addition to worked examples within the text a number of problems for student solution are provided at the end of each chapter, ranging in difficulty from the simple to the more challenging. Most solutions for these problems are provided in the book, while others can be found on the accompanying website. Introductory Circuits is designed for first year undergraduate mechanical, biomedical, materials, chemical and civil engineering students who are taking short electrical engineering courses and find other texts on the subject too content-heavy for their needs. With its clear structure and consistent treatment of resistive, reactive and small-signal operation, this volume is also a great supporting text for mainstream electrical engineering students.




Basic Electric Circuit Theory


Book Description

This is the only book on the market that has been conceived and deliberately written as a one-semester text on basic electric circuit theory. As such, this book employs a novel approach to the exposition of the material in which phasors and ac steady-state analysis are introduced at the beginning. This allows one to use phasors in the discussion of transients excited by ac sources, which makes the presentation of transients more comprehensive and meaningful. Furthermore, the machinery of phasors paves the road to the introduction of transfer functions, which are then used in the analysis of transients and the discussion of Bode plots and filters. Another salient feature of the text is the consolidation into one chapter of the material concerned with dependent sources and operational amplifiers. Dependent sources are introduced as linear models for transistors on the basis of small signal analysis. In the text, PSpice simulations are prominently featured to reinforce the basic material and understanding of circuit analysis.Key Features* Designed as a comprehensive one-semester text in basic circuit theory* Features early introduction of phasors and ac steady-state analysis* Covers the application of phasors and ac steady-state analysis* Consolidates the material on dependent sources and operational amplifiers* Places emphasis on connections between circuit theory and other areas in electrical engineering* Includes PSpice tutorials and examples* Introduces the design of active filters* Includes problems at the end of every chapter* Priced well below similar books designed for year-long courses




Introductory Circuit Analysis


Book Description




Introduction to Circuit Analysis and Design


Book Description

Introduction to Circuit Analysis and Design takes the view that circuits have inputs and outputs, and that relations between inputs and outputs and the terminal characteristics of circuits at input and output ports are all-important in analysis and design. Two-port models, input resistance, output impedance, gain, loading effects, and frequency response are treated in more depth than is traditional. Due attention to these topics is essential preparation for design, provides useful preparation for subsequent courses in electronic devices and circuits, and eases the transition from circuits to systems.




Introduction to Electrical Circuit Analysis


Book Description

A concise and original presentation of the fundamentals for ‘new to the subject’ electrical engineers This book has been written for students on electrical engineering courses who don’t necessarily possess prior knowledge of electrical circuits. Based on the author’s own teaching experience, it covers the analysis of simple electrical circuits consisting of a few essential components using fundamental and well-known methods and techniques. Although the above content has been included in other circuit analysis books, this one aims at teaching young engineers not only from electrical and electronics engineering, but also from other areas, such as mechanical engineering, aerospace engineering, mining engineering, and chemical engineering, with unique pedagogical features such as a puzzle-like approach and negative-case examples (such as the unique “When Things Go Wrong…” section at the end of each chapter). Believing that the traditional texts in this area can be overwhelming for beginners, the author approaches his subject by providing numerous examples for the student to solve and practice before learning more complicated components and circuits. These exercises and problems will provide instructors with in-class activities and tutorials, thus establishing this book as the perfect complement to the more traditional texts. All examples and problems contain detailed analysis of various circuits, and are solved using a ‘recipe’ approach, providing a code that motivates students to decode and apply to real-life engineering scenarios Covers the basic topics of resistors, voltage and current sources, capacitors and inductors, Ohm’s and Kirchhoff’s Laws, nodal and mesh analysis, black-box approach, and Thevenin/Norton equivalent circuits for both DC and AC cases in transient and steady states Aims to stimulate interest and discussion in the basics, before moving on to more modern circuits with higher-level components Includes more than 130 solved examples and 120 detailed exercises with supplementary solutions Accompanying website to provide supplementary materials www.wiley.com/go/ergul4412




Introduction to Circuit Complexity


Book Description

An advanced textbook giving a broad, modern view of the computational complexity theory of boolean circuits, with extensive references, for theoretical computer scientists and mathematicians.




Electrical Circuits


Book Description

Relevant applications to electronics, telecommunications and power systems are included in a comprehensive introduction to the theory of electronic circuits for physical science students.




Introduction to Linear Circuit Analysis and Modelling


Book Description

Luis Moura and Izzat Darwazeh introduce linear circuit modelling and analysis applied to both electrical and electronic circuits, starting with DC and progressing up to RF, considering noise analysis along the way. Avoiding the tendency of current textbooks to focus either on the basic electrical circuit analysis theory (DC and low frequency AC frequency range), on RF circuit analysis theory, or on noise analysis, the authors combine these subjects into the one volume to provide a comprehensive set of the main techniques for the analysis of electric circuits in these areas. Taking the subject from a modelling angle, this text brings together the most common and traditional circuit analysis techniques (e.g. phasor analysis) with system and signal theory (e.g. the concept of system and transfer function), so students can apply the theory for analysis, as well as modelling of noise, in a broad range of electronic circuits. A highly student-focused text, each chapter contains exercises, worked examples and end of chapter problems, with an additional glossary and bibliography for reference. A balance between concepts and applications is maintained throughout. Luis Moura is a Lecturer in Electronics at the University of Algarve. Izzat Darwazeh is Senior Lecturer in Telecommunications at University College, London, previously at UMIST. - An innovative approach fully integrates the topics of electrical and RF circuits, and noise analysis, with circuit modelling - Highly student-focused, the text includes exercises and worked examples throughout, along with end of chapter problems to put theory into practice




Electrical Circuit Theory and Technology


Book Description

Electrical Circuit Theory and Technology is a fully comprehensive text for courses in electrical and electronic principles, circuit theory and electrical technology. The coverage takes students from the fundamentals of the subject, to the completion of a first year degree level course. Thus, this book is ideal for students studying engineering for the first time, and is also suitable for pre-degree vocational courses, especially where progression to higher levels of study is likely. John Bird's approach, based on 700 worked examples supported by over 1000 problems (including answers), is ideal for students of a wide range of abilities, and can be worked through at the student's own pace. Theory is kept to a minimum, placing a firm emphasis on problem-solving skills, and making this a thoroughly practical introduction to these core subjects in the electrical and electronic engineering curriculum. This revised edition includes new material on transients and laplace transforms, with the content carefully matched to typical undergraduate modules. Free Tutor Support Material including full worked solutions to the assessment papers featured in the book will be available at http://textbooks.elsevier.com/. Material is only available to lecturers who have adopted the text as an essential purchase. In order to obtain your password to access the material please follow the guidelines in the book.