Stable Isotope Research Pool Inventory


Book Description

This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56.










Principles of Stable Isotope Distribution


Book Description

This book presents a quantitative treatment of the theory and natural variations of light stable isotopes. It discusses isotope distribution in the context of fractionation processes, thermodynamics, mass conservation, exchange kinetics, and diffusion theory, and includes more than 100 original equations. The theoretical principles are illustrated with natural examples that emphasize oxygen and hydrogen isotope variations in natural waters, terrestrial and extraterrestrial rocks, and hydrothermal systems. New data on meteoric precipitation, rivers, springs, formation fluids, and hydrothermal systems are included in relation to various natural phenomena. Essentially, this book seeks to reconnect the diverse phenomenological observations of isotope distribution to the quantitative theories of physical chemistry and the language of differential equations. It may serve as a textbook for advanced students, as a research reference, or as a quick source of information. The book is organized into five chapters, each followed by suggested quantitative problems and a short reference list. The three theoretical chapters progress from an elementary review of the physical chemistry of stable isotopes, to the thermodynamics of isotopic compounds, and finally to the calculation of isotope distribution in dynamic systems. The third and fifth chapters emphasize oxygen and hydrogen isotope variations in Earth's hydrosphere and lithosphere, constituting the most important examples of the theoretical principles. Appendices provide data on atomic weights of light elements, physical constants, mathematical relationships, and isotopic fractionation factors.







Isotopes for Medicine and the Life Sciences


Book Description

Radioactive isotopes and enriched stable isotopes are used widely in medicine, agriculture, industry, and science, where their application allows us to perform many tasks more accurately, more simply, less expensively, and more quickly than would otherwise be possible. Indeed, in many casesâ€"for example, biological tracersâ€"there is no alternative. In a stellar example of "technology transfer" that began before the term was popular, the Department of Energy (DOE) and its predecessors has supported the development and application of isotopes and their transfer to the private sector. The DOE is now at an important crossroads: Isotope production has suffered as support for DOE's laboratories has declined. In response to a DOE request, this book is an intensive examination of isotope production and availability, including the education and training of those who will be needed to sustain the flow of radioactive and stable materials from their sources to the laboratories and medical care facilities in which they are used. Chapters include an examination of enriched stable isotopes; reactor and accelerator-produced radionuclides; partnerships among industries, national laboratories, and universities; and national isotope policy.







Non-Traditional Stable Isotopes


Book Description

The development of multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) makes it possible to precisely measure non-traditional stable isotopes. This volume reviews the current status of non-traditional isotope geochemistry from analytical, theoretical, and experimental approaches to analysis of natural samples. In particular, important applications to cosmochemistry, high-temperature geochemistry, low-temperature geochemistry, and geobiology are discussed. This volume provides the most comprehensive review on non-traditional isotope geochemistry for students and researchers who are interested in both the theory and applications of non-traditional stable isotope geochemistry.