Inverse Problems in Engineering Mechanics


Book Description

Inverse problems can be found in many topics of engineering mechanics. There are many successful applications in the fields of inverse problems (non-destructive testing and characterization of material properties by ultrasonic or X-ray techniques, thermography, etc.). Generally speaking, the inverse problems are concerned with the determination of the input and the characteristics of a mechanical system from some of the output from the system. Mathematically, such problems are ill-posed and have to be overcome through development of new computational schemes, regularization techniques, objective functionals, and experimental procedures.Seventy-two papers were presented at the International Symposium on Inverse Problems in Mechanics (ISIP '98) held in March of 1998 in Nagano, where recent developments in the inverse problems in engineering mechanics and related topics were discussed. The main themes were: mathematical and computational aspects of the inverse problems, parameter or system identification, shape determination, sensitivity analysis, optimization, material property characterization, ultrasonic non-destructive testing, elastodynamic inverse problems, thermal inverse problems, and other engineering applications.




Inverse Problems with Applications in Science and Engineering


Book Description

Driven by the advancement of industrial mathematics and the need for impact case studies, Inverse Problems with Applications in Science and Engineering thoroughly examines the state-of-the-art of some representative classes of inverse and ill-posed problems for partial differential equations (PDEs). The natural practical applications of this examination arise in heat transfer, electrostatics, porous media, acoustics, fluid and solid mechanics – all of which are addressed in this text. Features: Covers all types of PDEs — namely, elliptic (Laplace’s, Helmholtz, modified Helmholtz, biharmonic and Stokes), parabolic (heat, convection, reaction and diffusion) and hyperbolic (wave) Excellent reference for post-graduates and researchers in mathematics, engineering and any other scientific discipline that deals with inverse problems Contains both theory and numerical algorithms for solving all types of inverse and ill-posed problems




Inverse Problems in Engineering Mechanics II


Book Description

Inverse Problems are found in many areas of engineering mechanics and there are many successful applications e.g. in non-destructive testing and characterization of material properties by ultrasonic or X-ray techniques, thermography, etc. Generally speaking, inverse problems are concerned with the determination of the input and the characteristics of a system, given certain aspects of its output. Mathematically, such problems are ill-posed and have to be overcome through development of new computational schemes, regularization techniques, objective functionals, and experimental procedures. Following the IUTAM Symposium on these topics, held in May 1992 in Tokyo, another in November 1994 in Paris, and also the more recent ISIP'98 in March 1998 in Nagano, it was concluded that it would be fruitful to gather regularly with researchers and engineers for an exchange of the newest research ideas. The most recent Symposium of this series "International Symposium on Inverse Problems in Engineering Mechanics (ISIP2000)" was held in March of 2000 in Nagano, Japan, where recent developments in inverse problems in engineering mechanics and related topics were discussed.The following general areas in inverse problems in engineering mechanics were the subjects of ISIP2000: mathematical and computational aspects of inverse problems, parameter or system identification, shape determination, sensitivity analysis, optimization, material property characterization, ultrasonic non-destructive testing, elastodynamic inverse problems, thermal inverse problems, and other engineering applications. The papers in these proceedings provide a state-of-the-art review of the research on inverse problems in engineering mechanics and it is hoped that some breakthrough in the research can be made and that technology transfer will be stimulated and accelerated due to their publication.




Inverse and Crack Identification Problems in Engineering Mechanics


Book Description

Written for structural and mechanical engineers involved in nondestructive testing and quality control projects as well as research engineers and applied mathematicians, this monograph provides all the required material for the mathematical and numerical modeling of crack identification testing procedures in statis and dynamics. It uses boundary element techniques for delicate computational mechanics modeling and considers both elastostatic and harmonic or transient dynamic problems. Inverse problems are formulated as output error minimization problems and are theoretically studied as a bilevel optimization problem. Beyond classical numerical optimization, soft computing tools (neural networks and genetic algorithms) and filter algorithms are used for the numerical solution. Stavroulakis teaches applied mathematics and civil engineering at the Technical University Carolo Wilhelmina. c. Book News Inc.




Inverse Problems in Engineering Mechanics IV


Book Description

This latest collection of proceedings provides a state of the art review of research on inverse problems in engineering mechanics. Inverse problems can be found in many areas of engineering mechanics, and have many successful applications. They are concerned with estimating the unknown input and/or the characteristics of a system given certain aspects of its output. The mathematical challenges of such problems have to be overcome through the development of new computational schemes, regularization techniques, objective functionals, and experimental procedures. The papers within this represent an excellent reference for all in the field. - Providing a state of the art review of research on inverse problems in engineering mechanics - Contains the latest research ideas and related techniques - A recognized standard reference in the field of inverse problems - Papers from Asia, Europe and America are all well represented




Inverse Problems in Engineering Mechanics III


Book Description

Inverse Problems are found in many areas of engineering mechanics and there are many successful applications e.g. in non-destructive testing and characterization of material properties by ultrasonic or X-ray techniques, thermography, etc. Generally speaking, inverse problems are concerned with the determination of the input and the characteristics of a system, given certain aspects of its output. Mathematically, such problems are ill-posed and have to be overcome through development of new computational schemes, regularization techniques, objective functionals, and experimental procedures. This volume contains a selection of peer-reviewed papers presented at the International Symposium on Inverse Problems in Engineering Mechanics (ISIP2001), held in February of 2001 in Nagano, Japan, where recent development in inverse problems in engineering mechanics and related topics were discussed. The following general areas in inverse problems in engineering mechanics were the subjects of the ISIP2001: mathematical and computational aspects of inverse problems, parameter or system identification, shape determination, sensitivity analysis, optimization, material property characterization, ultrasonic non-destructive testing, elastodynamic inverse problems, thermal inverse problems, and other engineering applications. These papers can provide a state-of-the-art review of the research on inverse problems in engineering mechanics.




Inverse Problems in Vibration


Book Description

In the first, 1986, edition of this book, inverse problems in vibration were interpreted strictly: problems concerning the reconstruction of a unique, undamped vibrating system, of a specified type, from specified vibratory behaviour, particularly specified natural frequencies and/or natural mode shapes. In this new edition the scope of the book has been widened to include topics such as isospectral systems- families of systems which all exhibit some specified behaviour; applications of the concept of Toda flow; new, non-classical approaches to inverse Sturm-Liouville problems; qualitative properties of the modes of some finite element models; damage identification. With its emphasis on analysis, on qualitative results, rather than on computation, the book will appeal to researchers in vibration theory, matrix analysis, differential and integral equations, matrix analysis, non-destructive testing, modal analysis, vibration isolation, etc. "This book is a necessary addition to the library of engineers and mathematicians working in vibration theory." Mathematical Reviews




Computational Methods for Inverse Problems


Book Description

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.




Fracture Mechanics


Book Description

This book presents, in a unified manner, a variety of topics in Continuum and Fracture Mechanics: energy methods, conservation laws, mathematical methods to solve two-dimensional and three-dimensional crack problems. Moreover, a series of new subjects is presented in a straightforward manner, accessible to under-graduate students. Emphasizing physical or experimental back-grounds, then analysis and theoretical results, this monograph is intended for use by students and researchers in solid mechanics, mechanical engineering and applied mathematics.




Inverse Heat Transfer


Book Description

This book introduces the fundamental concepts of inverse heat transfer problems. It presents in detail the basic steps of four techniques of inverse heat transfer protocol, as a parameter estimation approach and as a function estimation approach. These techniques are then applied to the solution of the problems of practical engineering interest involving conduction, convection, and radiation. The text also introduces a formulation based on generalized coordinates for the solution of inverse heat conduction problems in two-dimensional regions.