Inverse Problems in Medical Imaging and Nondestructive Testing


Book Description

14 contributions present mathematical models for different imaging techniques in medicine and nondestructive testing. The underlying mathematical models are presented in a way that also newcomers in the field have a chance to understand the relation between the special applications and the mathematics needed for successfully treating these problems. The reader gets an insight into a modern field of scientific computing with applications formerly not presented in such form, leading from the basics to actual research activities.




Advances in Inverse Problems for Partial Differential Equations


Book Description

This volume contains the proceedings of two AMS Special Sessions “Recent Developments on Analysis and Computation for Inverse Problems for PDEs,” virtually held on March 13–14, 2021, and “Recent Advances in Inverse Problems for Partial Differential Equations,” virtually held on October 23–24, 2021. The papers in this volume focus on new results on numerical methods for various inverse problems arising in electrical impedance tomography, inverse scattering in radar and optics problems, reconstruction of initial conditions, control of acoustic fields, and stock price forecasting. The authors studied iterative and non-iterative approaches such as optimization-based, globally convergent, sampling, and machine learning-based methods. The volume provides an interesting source on advances in computational inverse problems for partial differential equations.




Scattering, Two-Volume Set


Book Description

Part 1: SCATTERING OF WAVES BY MACROSCOPIC TARGET -- Interdisciplinary aspects of wave scattering -- Acoustic scattering -- Acoustic scattering: approximate methods -- Electromagnetic wave scattering: theory -- Electromagnetic wave scattering: approximate and numerical methods -- Electromagnetic wave scattering: applications -- Elastodynamic wave scattering: theory -- Elastodynamic wave scattering: Applications -- Scattering in Oceans -- Part 2: SCATTERING IN MICROSCOPIC PHYSICS AND CHEMICAL PHYSICS -- Introduction to direct potential scattering -- Introduction to Inverse Potential Scattering -- Visible and Near-visible Light Scattering -- Practical Aspects of Visible and Near-visible Light Scattering -- Nonlinear Light Scattering -- Atomic and Molecular Scattering: Introduction to Scattering in Chemical -- X-ray Scattering -- Neutron Scattering -- Electron Diffraction and Scattering -- Part 3: SCATTERING IN NUCLEAR PHYSICS -- Nuclear Physics -- Part 4: PARTICLE SCATTERING -- State of the Art of Peturbative Methods -- Scattering Through Electro-weak Interactions (the Fermi Scale) -- Scattering Through Strong Interactions (the Hadronic or QCD Scale) -- Part 5: SCATTERING AT EXTREME PHYSICAL SCALES -- Scattering at Extreme Physical Scales -- Part 6: SCATTERING IN MATHEMATICS AND NON-PHYSICAL SCIENCES -- Relations with Other Mathematical Theories -- Inverse Scattering Transform and Non-linear Partial Differenttial Equations -- Scattering of Mathematical Objects.




The Method of Approximate Inverse: Theory and Applications


Book Description

This book is concerned with the method of approximate inverse which is a regularization technique for stably solving inverse problems in various settings. It demonstrates the performance and functionality of the method on several examples from medical imaging and non-destructive testing, such as computerized tomography, Doppler tomography, SONAR, X-ray diffractometry and thermoacoustic computerized tomography.




Inverse Acoustic and Electromagnetic Scattering Theory


Book Description

The inverse scattering problem is central to many areas of science and technology such as radar and sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this third edition, new sections have been added on the linear sampling and factorization methods for solving the inverse scattering problem as well as expanded treatments of iteration methods and uniqueness theorems for the inverse obstacle problem. These additions have in turn required an expanded presentation of both transmission eigenvalues and boundary integral equations in Sobolev spaces. As in the previous editions, emphasis has been given to simplicity over generality thus providing the reader with an accessible introduction to the field of inverse scattering theory. Review of earlier editions: “Colton and Kress have written a scholarly, state of the art account of their view of direct and inverse scattering. The book is a pleasure to read as a graduate text or to dip into at leisure. It suggests a number of open problems and will be a source of inspiration for many years to come.” SIAM Review, September 1994 “This book should be on the desk of any researcher, any student, any teacher interested in scattering theory.” Mathematical Intelligencer, June 1994




Mathematical Methods in Image Reconstruction


Book Description

This book describes the state of the art of the mathematical theory and numerical analysis of imaging. Some of the applications covered in the book include computerized tomography, magnetic resonance imaging, emission tomography, electron microscopy, ultrasound transmission tomography, industrial tomography, seismic tomography, impedance tomography, and NIR imaging.




Discrete Inverse Problems


Book Description

This book gives an introduction to the practical treatment of inverse problems by means of numerical methods, with a focus on basic mathematical and computational aspects. To solve inverse problems, we demonstrate that insight about them goes hand in hand with algorithms.




Wavefield Inversion


Book Description

This book provides an up-to-date presentation of a broad range of contemporary problems in inverse scattering involving acoustic, elastic and electromagnetic waves. Descriptions will be given of traditional (but still in use and subject to on-going improvements) and more recent methods for identifying either: a) the homogenized material parameters of (spatially) unbounded or bounded heterogeneous media, or b) the detailed composition (spatial distribution of the material parameters) of unbounded or bounded heterogeneous media, or c) the location, shape, orientation and material characteristics of an object embedded in a wellcharacterized homogeneous, homogenized or heterogeneous unbounded or bounded medium, by inversion of reflected, transmitted or scattered spatiotemporal recorded waveforms resulting from the propagation of probe radiation within the medium.




Radon Transforms and Tomography


Book Description

One of the most exciting features of the fields of Radon transforms and tomography is the strong relationship between high-level pure mathematics and applications to areas such as medical imaging and industrial nondestructive evaluation. The proceedings featured in this volume bring together fundamental research articles in the major areas of Radon transforms and tomography. This volume includes expository papers that are of special interest to beginners as well as advanced researchers. Topics include local tomography and wavelets, Lambda tomography and related methods, tomographic methods in RADAR, ultrasound, Radon transforms and differential equations, and the Pompeiu problem. The major themes in Radon transforms and tomography are represented among the research articles. Pure mathematical themes include vector tomography, microlocal analysis, twistor theory, Lie theory, wavelets, harmonic analysis, and distribution theory. The applied articles employ high-quality pure mathematics to solve important practical problems. Effective scanning geometries are developed and tested for a NASA wind tunnel. Algorithms for limited electromagnetic tomographic data and for impedance imaging are developed and tested. Range theorems are proposed to diagnose problems with tomography scanners. Principles are given for the design of X-ray tomography reconstruction algorithms, and numerical examples are provided. This volume offers readers a comprehensive source of fundamental research useful to both beginners and advanced researchers in the fields.




Computational Mathematics Driven by Industrial Problems


Book Description

These lecture notes by very authoritative scientists survey recent advances of mathematics driven by industrial application showing not only how mathematics is applied to industry but also how mathematics has drawn benefit from interaction with real-word problems. The famous David Report underlines that innovative high technology depends crucially for its development on innovation in mathematics. The speakers include three recent presidents of ECMI, one of ECCOMAS (in Europe) and the president of SIAM.