Inverse Problems of Acoustic and Elastic Waves


Book Description

Contents: A Survey of the Vocal Tract Inverse Problem: Theory, Computations and Experiments; Convergence of Discrete Inversion Solutions; Inversion of Band Limited Reflection Seismograms; Some Recent Results in Inverse Scattering Theory; Well-Posed Questions and Exploration of the Space of Parameters in Linear and Nonlinear Inversion; The Seismic Reflection Inverse Problem; Migration Methods: Partial but Efficient Solutions to the Seismic Inverse Problem; Relationship Between Linearized Inverse Scattering and Seismic Migration; Project Review on Geophysical and Ocean Sound Speed Profile Inversion; Acoustic Tomography; Inverse Problems of Acoustic and Elastic Waves; Finite Element Methods with Anisotropic Diffusion for Singularly Perturbed Convection Diffusion Problems; Adaptive Grid Methods for Hyperbolic Partial Differential Equations; Some Simple Stability Results for Inverse Scattering Problems; Inverse Scattering for Stratified, Isotropic Elastic Media Using the Trace Method; A Layer-Stripping Solution of the Inverse Problem for a One-Dimensional Elastic Medium; On Constructing Solutions to an Inverse Euler-Bernoulli Beam Problem; Far Field Patterns in Acoustic and Electromagnetic Scattering Theory; Renaissance Inversion; On the Equilibrium Equations of Poroelasticity; GPST-A Versatile Numerical Method for Solving Inverse Problems of Partial Differential Equations; and Applications of Seismic Ray-Tracing Techniques to the Study of Earthquake Focal Regions.




Inverse Problems in Wave Propagation


Book Description

Inverse problems in wave propagation occur in geophysics, ocean acoustics, civil and environmental engineering, ultrasonic non-destructive testing, biomedical ultrasonics, radar, astrophysics, as well as other areas of science and technology. The papers in this volume cover these scientific and technical topics, together with fundamental mathematical investigations of the relation between waves and scatterers.




Direct and Inverse Problems in Wave Propagation and Applications


Book Description

This book is the third volume of three volume series recording the "Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment" taking place in Linz, Austria, October 3-7, 2011. This book surveys recent developments in the analysis of wave propagation problems. The topics covered include aspects of the forward problem and problems in inverse problems, as well as applications in the earth sciences. Wave propagation problems are ubiquitous in environmental applications such as seismic analysis, acoustic and electromagnetic scattering. The design of efficient numerical methods for the forward problem, in which the scattered field is computed from known geometric configurations is very challenging due to the multiscale nature of the problems. Even more challenging are inverse problems where material parameters and configurations have to be determined from measurements in conjunction with the forward problem. This book contains review articles covering several state-of-the-art numerical methods for both forward and inverse problems. This collection of survey articles focusses on the efficient computation of wave propagation and scattering is a core problem in numerical mathematics, which is currently of great research interest and is central to many applications in energy and the environment. Two generic applications which resonate strongly with the central aims of the Radon Special Semester 2011 are forward wave propagation in heterogeneous media and seismic inversion for subsurface imaging. As an example of the first application, modelling of absorption and scattering of radiation by clouds, aerosol and precipitation is used as a tool for interpretation of (e.g.) solar, infrared and radar measurements, and as a component in larger weather/climate prediction models in numerical weather forecasting. As an example of the second application, inverse problems in wave propagation in heterogeneous media arise in the problem of imaging the subsurface below land or marine deposits. The book records the achievements of Workshop 3 "Wave Propagation and Scattering, Inverse Problems and Applications in Energy and the Environment". It brings together key numerical mathematicians whose interest is in the analysis and computation of wave propagation and scattering problems, and in inverse problems, together with practitioners from engineering and industry whose interest is in the applications of these core problems.




Inverse Source Problems


Book Description

A careful exposition of a research field of current interest. This includes a brief survey of the subject and an introduction to recent developments and unsolved problems.




Offset-dependent Reflectivity


Book Description

Recognizing the need for education and further research in AVO, the editors have compiled an all-encompassing treatment of this versatile technology. In addition to providing a general introduction to the subject and a review of the current state of the art, this unique volume provides useful reference materials and data plus original contributions at the leading edge of AVO technologies.




Seismic Inversion


Book Description

This book describes the theory and practice of inverting seismic data for the subsurface rock properties of the earth. The primary application is for inverting reflection and/or transmission data from engineering or exploration surveys, but the methods described also can be used for earthquake studies. Seismic Inversion will be of benefit to scientists and advanced students in engineering, earth sciences, and physics. It is desirable that the reader has some familiarity with certain aspects of numerical computation, such as finite-difference solutions to partial differential equations, numerical linear algebra, and the basic physics of wave propagation. For those not familiar with the terminology and methods of seismic exploration, a brief introduction is provided. To truly understand the nuances of seismic inversion, we have to actively practice what we preach (or teach). Therefore, computational labs are provided for most of the chapters, and some field data labs are given as well.




Theory of Elastic Waves in Crystals


Book Description

The translation into English of Academician Fedorov's ex cellent treatise on elastic wave propagation in solids has come at an opportune time. His systematic exposition of all aspects of this field is most lucid and straightforward. The author has gone to considerable pains to develop in his mathematical background a consistent tensor framework which acts as a unifying motif through out the various aspects of the subject. In many respects his approach will appear quite novel as his treatment introduces several concepts and parameters previously unfamiliar to the literature of the West. Extensive tables in the final chapters illustrate the application of these ideas to the exist ing body of experimental data. The book is both extensive and comprehensive in al1 phases of the subject. Workers in the fields of ultrasonic propagation and elastic properties will find this treatise of great interest and direct concern. H. B. Huntington Rensselaer Polytechnic Institute Troy, New York November 1967 v Preface to the American Edition In preparing this edition I have corrected various misprints and errors appearing in the Russian edition, but I have also incorpo rated some substantial changes and additions, the latter representing some results I and my colleagues have recently obtained and pub_ lished in Russian journals. For example, in section 32 I have added a general derivation of the equation for the seetion of the wave surface by a symmetry plane for cubic, hexagonal, tetragonal, and orthorhombic crystals.




Spectral Geometry and Inverse Scattering Theory


Book Description

Inverse scattering problems are a vital subject for both theoretical and experimental studies and remain an active field of research in applied mathematics. This book provides a detailed presentation of typical setup of inverse scattering problems for time-harmonic acoustic, electromagnetic and elastic waves. Moreover, it provides systematical and in-depth discussion on an important class of geometrical inverse scattering problems, where the inverse problem aims at recovering the shape and location of a scatterer independent of its medium properties. Readers of this book will be exposed to a unified framework for analyzing a variety of geometrical inverse scattering problems from a spectral geometric perspective. This book contains both overviews of classical results and update-to-date information on latest developments from both a practical and theoretical point of view. It can be used as an advanced graduate textbook in universities or as a reference source for researchers in acquiring the state-of-the-art results in inverse scattering theory and their potential applications.




Computational Methods for Applied Inverse Problems


Book Description

Nowadays inverse problems and applications in science and engineering represent an extremely active research field. The subjects are related to mathematics, physics, geophysics, geochemistry, oceanography, geography and remote sensing, astronomy, biomedicine, and other areas of applications. This monograph reports recent advances of inversion theory and recent developments with practical applications in frontiers of sciences, especially inverse design and novel computational methods for inverse problems. The practical applications include inverse scattering, chemistry, molecular spectra data processing, quantitative remote sensing inversion, seismic imaging, oceanography, and astronomical imaging. The book serves as a reference book and readers who do research in applied mathematics, engineering, geophysics, biomedicine, image processing, remote sensing, and environmental science will benefit from the contents since the book incorporates a background of using statistical and non-statistical methods, e.g., regularization and optimization techniques for solving practical inverse problems.




Scattering, Two-Volume Set


Book Description

Scattering is the collision of two objects that results in a change of trajectory and energy. For example, in particle physics, such as electrons, photons, or neutrons are "scattered off" of a target specimen, resulting in a different energy and direction. In the field of electromagnetism, scattering is the random diffusion of electromagnetic radiation from air masses is an aid in the long-range sending of radio signals over geographic obstacles such as mountains. This type of scattering, applied to the field of acoustics, is the spreading of sound in many directions due to irregularities in the transmission medium. Volume I of Scattering will be devoted to basic theoretical ideas, approximation methods, numerical techniques and mathematical modeling. Volume II will be concerned with basic experimental techniques, technological practices, and comparisons with relevant theoretical work including seismology, medical applications, meteorological phenomena and astronomy. This reference will be used by researchers and graduate students in physics, applied physics, biophysics, chemical physics, medical physics, acoustics, geosciences, optics, mathematics, and engineering. This is the first encyclopedic-range work on the topic of scattering theory in quantum mechanics, elastodynamics, acoustics, and electromagnetics. It serves as a comprehensive interdisciplinary presentation of scattering and inverse scattering theory and applications in a wide range of scientific fields, with an emphasis, and details, up-to-date developments. Scattering also places an emphasis on the problems that are still in active current research. The first interdisciplinary reference source on scattering to gather all world expertise in this technique Covers the major aspects of scattering in a common language, helping to widening the knowledge of researchers across disciplines The list of editors, associate editors and contributors reads like an international Who's Who in the interdisciplinary field of scattering