Inversion Methods in Atmospheric Remote Sounding


Book Description

Inversion Methods in Atmospheric Remote Sounding contains the technical proceedings of the First International Interactive Workshop on Inversion Methods in Atmospheric Remote Sounding, held in Williamsburg, Virginia, on December 15-17, 1976. The papers review the state of the art in inversion methods used in retrieving information about the atmosphere from remotely sensed data. The mathematical theory of inversion methods is described, together with the application of these methods to the remote sounding of atmospheric temperature, relative humidity, and gaseous and aerosol constituents. Comprised of 21 chapters, this book begins with an introduction to methods for solving problems in radiative transfer and multiple scattering, followed by a discussion on the problem of radiative transfer in a scattering plane-parallel atmosphere. The next section is devoted to the mathematical theory of inversion methods and considers some aspects of the inversion problem in remote sensing, along with the relaxation method for the inverse solution of nonlinear and linear transfer equations. The final section explores inversion methods in gaseous, thermal, and aerosol atmospheres, covering topics such as the Backus-Gilbert theory and its application to retrieval of ozone and temperature profiles; inversion of scattered radiance horizon profiles for gaseous concentrations and aerosol parameters; and inversion of passive microwave remote sensing data from satellites. This monograph will be of interest to scientists from universities, government agencies, and research laboratories.










Remote Sensing of the Atmosphere


Book Description







Inverse Methods For Atmospheric Sounding: Theory And Practice


Book Description

Remote sounding of the atmosphere has proved to be a fruitful method of obtaining global information about the atmospheres of the earth and other planets. This book treats comprehensively the inverse problem of remote sounding, and discusses a wide range of retrieval methods for extracting atmospheric parameters of interest from the quantities (thermal emission, for example) that can be measured remotely. Inverse theory is treated in depth from an estimation-theory point of view, but practical questions are also emphasized, such as designing observing systems to obtain the maximum quantity of information, efficient numerical implementation of algorithms for processing large quantities of data, error analysis and approaches to the validation of the resulting retrievals. The book is targeted at graduate students as well as scientists.










Inversion Methods in Atmospheric Remote Sounding


Book Description

The mathematical theory of inversion methods is applied to the remote sounding of atmospheric temperature, humidity, and aerosol constituents.