Cellulose-Based Superabsorbent Hydrogels


Book Description

With the prospect of revolutionizing specific technologies, this book highlights the most exciting and impactful current research in the fields of cellulose-based superabsorbent hydrogels with their smart applications. The book assembles the newest synthetic routes, characterization methods, and applications in the emergent area. Leading experts in the field have contributed chapters representative of their most recent research results, shedding light on the enormous potential of this field and thoroughly presenting cellulose-based hydrogel functioning materials. The book is intended for the polymer chemists, academic and industrial scientists and engineers, pharmaceutical and biomedical scientists and agricultural engineers engaged in research and development on absorbency, absorbent products and superabsorbent hydrogels. It can also be supportive for undergraduate and graduate students.




Hydrogels


Book Description

Hydrogels, as three-dimensional polymer networks, are able to retain a large amount of water in their swollen state. The biomedical application of hydrogels was initially hampered by the toxicity of cross-linking agents and the limitations of hydrogel formation under physiological conditions. However, emerging knowledge in polymer chemistry and an increased understanding of biological processes have resulted in the design of versatile materials and minimally invasive therapies.The novel but challenging properties of hydrogels are attracting the attention of researchers in the biological, medical, and pharmaceutical fields. In the last few years, new methods have been developed for the preparation of hydrophilic polymers and hydrogels, which may be used in future biomedical and drug delivery applications. Such efforts include the synthesis of self-organized nanostructures based on triblock copolymers with applications in controlled drug delivery. These hydrogels could be used as carriers for drug delivery when combined with the techniques of drug imprinting and subsequent release. Engineered protein hydrogels have many potential advantages. They are excellent biomaterials and biodegradables. Furthermore, they could encapsulate drugs and be used in injectable forms to replace surgery, to repair damaged cartilage, in regenerative medicine, or in tissue engineering. Also, they have potential applications in gene therapy, although this field is relatively new.




Hydrogels Based on Natural Polymers


Book Description

Hydrogels Based on Natural Polymers presents the latest research on natural polymer-based hydrogels, covering fundamentals, preparation methods, synthetic pathways, advanced properties, major application areas, and novel characterization techniques. The advantages and disadvantages of each natural polymer-based hydrogel are also discussed, enabling preparation tactics for specific properties and applications. Sections cover fundamentals, development, characteristics, structures and properties. Additional chapters cover presentation methods and properties based on natural polymers, including physical and chemical properties, stimuli-responsive properties, self-healing properties, and biological properties. The final section presents major applications areas, including the biomedical field, agriculture, water treatments, and the food industry. This is a highly valuable resource for academic researchers, scientists and advanced students working with hydrogels and natural polymers, as well as across the fields of polymer science, polymer chemistry, plastics engineering, biopolymers and biomaterials. The detailed information will also be of great interest to scientists and R&D professionals, product designers, technicians and engineers across industries. - Provides systematic coverage of all aspects of hydrogels based on natural polymers, including fundamentals, preparation methods, properties and characterization - Offers a balanced assessment of the specific properties and possibilities offered by different natural polymer-based hydrogels, drawing on innovative research - Examines cutting-edge applications across biomedicine, agriculture, water treatments, and the food industry




Chitin and Chitosan


Book Description

Offers a comprehensive guide to the isolation, properties and applications of chitin and chitosan Chitin and Chitosan: Properties and Applications presents a comprehensive review of the isolation, properties and applications of chitin and chitosan. These promising biomaterials have the potential to be broadly applied and there is a growing market for these biopolymers in areas such as medical and pharmaceutical, packaging, agricultural, textile, cosmetics, nanoparticles and more. The authors – noted experts in the field – explore the isolation, characterization and the physical and chemical properties of chitin and chitosan. They also examine their properties such as hydrogels, immunomodulation and biotechnology, antimicrobial activity and chemical enzymatic modifications. The book offers an analysis of the myriad medical and pharmaceutical applications as well as a review of applications in other areas. In addition, the authors discuss regulations, markets and perspectives for the use of chitin and chitosan. This important book: Offers a thorough review of the isolation, properties and applications of chitin and chitosan. Contains information on the wide-ranging applications and growing market demand for chitin and chitosan Includes a discussion of current regulations and the outlook for the future Written for Researchers in academia and industry who are working in the fields of chitin and chitosan, Chitin and Chitosan: Properties and Applications offers a review of these promising biomaterials that have great potential due to their material properties and biological functionalities.




Biopolymer Membranes and Films


Book Description

Biopolymer Membranes and Films: Health, Food, Environment, and Energy Applications presents the latest techniques for the design and preparation of biopolymer-based membranes and films, leading to a range of cutting-edge applications. The first part of the book introduces the fundamentals of biopolymers, two-dimensional systems, and the characterization of biopolymer membranes and films, considering physicochemical, mechanical and barrier properties. Subsequent sections are organized by application area, with each chapter explaining how biopolymer-based membranes or films can be developed for specific innovative uses across the health, food, environmental and energy sectors. This book is a valuable resource for researchers, scientists and advanced students involved in biopolymer science, polymer membranes and films, polymer chemistry and materials science, as well as for those in industry and academia who are looking to develop materials for advanced applications in the health, food science, environment or energy industries. - Presents detailed coverage of a range of novel applications in key strategic areas across health, food, environment and energy - Considers the difficulties associated with two-dimensional materials - Assists the reader in selecting the best materials and properties for specific applications - Helps researchers, scientists and engineers combine the enhanced properties of membranes and films with the sustainable characteristics of biopolymer-based materials




Supramolecular Gels


Book Description

Supramolecular Gels Discover a current and authoritative overview of the cutting-edge in supramolecular gels from a leading voice in the field A promising new class of materials shows potential and is receiving increasing attention as an intelligent material for multifunctional systems. In a work that is sure to be of great interest to a wide variety of researchers, chemists, and engineers, Supramolecular Gels: Materials and Emerging Applications delivers an application-oriented and focused book exploring the most recent applications of supramolecular gels. This interdisciplinary book presents the underlying fundamentals of supramolecular gels before discussing their assembly mechanisms and structures. It also introduces different material systems, including composite supramolecular gels, organogels, hydrogels, self-healing, and graphene-based supramolecular gels. The book discusses current and emerging applications of these materials in devices like sensors and actuators, biomedical tools, and environmental applications. The distinguished author also offers valuable insights with respect to the design and character of brand-new versatile soft materials. Readers will also benefit from the inclusion of: A thorough introduction to the fundamentals of supramolecular gels, including their formation, classification, self-assembly, and mechanisms An exploration of supramolecular chirality and regulation in gel structures, as well as self-assembly and environmental applications of composite supramolecular gels Practical discussions of fluorescent organogels and hydrogels and their applications in analyte sensing An examination of self-healing and graphene-based supramolecular gels, and supramolecular gels for sensors and actuators Perfect for materials scientists, organic chemists, biochemists, catalytic chemists, and environmental chemists, Supramolecular Gels: Materials and Emerging Applications will also earn a place in the libraries of sensor developers and other professionals seeking a one-stop reference for this rapidly developing category of intelligent materials.




Hydrogel Sensors and Actuators


Book Description

Hydrogels are a fascinating class of polymers which show an immense ability of swelling under the influence of temperature, pH value or concentrations of different species in aqueous solutions. The volume change can amount up to several hundred percent. This unique behaviour is already used in such applications like disposable diapers, contact lenses or drug-delivery systems. The ability to perform mechanical work has been shifted the technical interest more and more towards sensors and actuators exploiting the thermo-chemo-mechano-electrical coupling within hydrogels. The accuracy requirements for such devices are much more demanding than for previous applications. Therefore, a deep knowledge of both the material and the functional properties of hydrogel sensors and actuators is needed. The monograph describes state of the art and recent developments for these materials in sensor and actuator technology.




Melt Extrusion


Book Description

This volume provides readers with the basic principles and fundamentals of extrusion technology and a detailed description of the practical applications of a variety of extrusion processes, including various pharma grade extruders. In addition, the downstream production of films, pellets and tablets, for example, for oral and other delivery routes, are presented and discussed utilizing melt extrusion. This book is the first of its kind that discusses extensively the well-developed science of extrusion technology as applied to pharmaceutical drug product development and manufacturing. By covering a wide range of relevant topics, the text brings together all technical information necessary to develop and market pharmaceutical dosage forms that meet current quality and regulatory requirements. As extrusion technology continues to be refined further, usage of extruder systems and the array of applications will continue to expand, but the core technologies will remain the same.




Nanocellulose and Nanohydrogel Matrices


Book Description

This first book on nanocellulose and nanohydrogels for biomedical applications is unique in discussing recent advancements in the field, resulting in a comprehensive, well-structured overview of nanocellulose and nanohydrogel materials based nanocomposites. The book covers different types of nanocellulose materials and their recent developments in the drug delivery and nanomedicine sector, along with synthesis, characterization, as well as applications in the biotechnological and biomedical fields. The book also covers the current status and future perspectives of bacterial cellulose and polyester hydrogel matrices, their preparation, characterization, and tissue engineering applications of water soluble hydrogel matrices obtained from biodegradable sources. In addition, the chitosan-based hydrogel and nanogel matrices, their involvement in the current biofabrication technologies, and influencing factors towards the biomedical sector of biosensors, biopharmaceuticals, tissue engineering appliances, implant materials, diagnostic probes and surgical aids are very well documented. Further, the history of cellulose-based and conducting polymer-based nanohydrogels, their classification, synthesis methods and applicability to different sectors, the challenges associated with their use, recent advances on the inhibitors of apoptosis proteins are also included. The recent developments and applications in the drug delivery sector gives an overview of facts about the nanofibrillated cellulose and copoly(amino acid) hydrogel matrices in the biotechnology and biomedicine field. This book serves as an essential reference for researchers and academics in chemistry, pharmacy, microbiology, materials science and biomedical engineering.




Polymeric Gels


Book Description

Polymeric Gels: Characterization, Properties and Biomedical Applications covers the fundamentals and applications of polymeric gels. Particular emphasis is given to their synthesis, properties and characteristics, with topics such as natural, synthetic, and smart polymeric gels, medical applications, and advancements in conductive and magnetic gels presented. The book covers the basics and applications of hydrogels, providing readers with a comprehensive guide on the types of polymeric gels used in the field of biomedical engineering. - Provides guidance for decisions on the suitability and appropriateness of a synthetic route and characterization technique for particular polymeric networks - Analyzes and compares experimental data - Presents in-depth information on the physical properties of polymeric gels using mathematical models - Uses an interdisciplinary approach to discuss potential new applications for both established polymeric gels and recent advances