Investigation of Biomolecular Interactions for Development of Sensors and Diagnostics


Book Description

The highly specific recognition processes between biomolecules mediate various crucial biological processes. Uncovering the molecular basis of these interactions is of great fundamental and applied importance. This research work focuses on understanding the interactions of several biomolecular recognition systems and processes that can provide fundamental information to aid in the rational design of sensing and molecular recognition tools. Initially, a reliable and versatile platform was developed to investigate biomolecular interactions at a molecular level. This involved several techniques, including biomolecule functionalization to enable attachment to self-assembled monolayers as well as atomic force microscopy (AFM) based force spectroscopy to uncover the binding or rupture forces between the receptor and ligand pairs. It was shown that this platform allowed determination of molecular binding between single molecules with a high specificity. The platform was further adapted to a general sensing formulation utilizing a group of flexible and adaptive nucleic acid recognition elements (RNA and DNA aptamers) to detect specific target proteins. Investigation of interactions at the molecular level allowed characterization of the dynamics, specificity and the conformational properties of these functional nucleic acids in a manner inaccessible via traditional interaction studies. These interactions were then adapted to aptamer-based detecting methods that at the ensemble or bulk scale, specifically taking advantage of mechanisms uncovered in the biophysical study of this system. A quartz crystal microbalance (QCM) was used to detect protein targets at the bulk level and the affinities and binding kinetics of these systems were analyzed. Along with AFM-based force spectroscopy, ensemble-averaging properties and molecular properties of these interactions could be correlated to contribute to bridging the gap across length scales. Finally, more broadly applicable sensing platform was developed to take advantage of the unique properties of aptamers. DNA was employed both as a carrier and as a molecular recognition agent. DNA was used as a template for nanoconstruction and fabricating unique shapes that could enhance the aptamer-based molecular recognition strategies. With aptamers tagged to distinct nanoconstructed DNA, a novel shape-based detecting method was enabled at the molecular level. The results demonstrated that this is a flexible strategy, which can be further developed as ultrasensitive single molecule sensing strategy in complex environments.




Advances in Chemical Bioanalysis


Book Description

Expert authors provide critical, in-depth reviews of available methods for retrieving selective information out of complex biological systems. Sensors, probes and devices are present and future tools of medicinal diagnostics, environmental monitoring, food analysis and molecular biology. These are based on fluorescence, electrochemistry and mass spectrometry. Coverage of this volume includes sensor development for the detection of small analytes, monitoring of biomolecular interactions, analysis of cellular function, development of diagnostic tools.




Biomolecular Sensors


Book Description

The development of devices that incorporate biological assemblies is impacting analytical and biomedical research. Today, scientists can monitor vital biological interactions-such as the binding of DNA to proteins-in real time, deriving unique information necessary to understanding biochemical pathways and thus aiding the design of drugs to regulat




Advances in Biosensors


Book Description

There is a worldwide effort towards the development of bioanalytical devices that can be used for detection, quantification and monitoring of specific chemical species. In this context, biosensors represent an emerging trend in the diagnostics industry. A biosensor is a device that has a biological sensing element either intimately connected to or integrated within a transducer. The aim is to produce a digital electronic signal that is proportional to the concentration of a specific chemical or a set of chemicals. Biosensors are specific, rapid, cost-effective and easy to use devices that can be employed with minimal sample treatment. Biosensors have applications in many areas such as biotechnology, healthcare, pollution monitoring, food and agriculture product monitoring, the pharmaceuticals industry and defense. This reference text is devoted to the principles and applications of biosensors and meets the needs of academic institutes, research laboratories and the rapidly developing biosensor industry. Discusses novel ways that can be used to fabricate biosensors for a variety of applications Biosensors have applications in many scientific areas Contributors are experts in their respective fields of research




Sensors for Diagnostics and Monitoring


Book Description

Sensor technologies and applications are evolving rapidly driven by the demand for new sensors for monitoring and diagnostic purposes to enable improvements in human health and safety. Simultaneously, sensors are required to consume less power, be autonomous, cost less, and be connected by the Internet of Things. New sensor technologies are being developed to fulfill these needs. This book reviews the latest developments in sensor technology and gives the reader an overview of the state-of-the-art in key areas, such as sensors for diagnostics and monitoring. Features Provides an overview of sensor technologies for monitoring and diagnostics applications. Presents state-of-the-art developments in selected topics for sensors that can be used for monitoring and diagnostics in future healthcare, structural monitoring, and smart environment applications. Features contributions from leading international experts in both industry and academia. Explores application areas that include medical diagnostics and screening, health monitoring, smart textiles, and structural monitoring.




Biosensors


Book Description

This book focuses on the state-of-the-art of biosensor research and development for specialists and non-specialists. It introduces the fundamentals of the subject with relevant characteristics of transducer elements, as well as biochemical recognition molecules. This book is ideal for researchers of nanotechnology, materials science and biophysics.




Nanobiosensors for Personalized and Onsite Biomedical Diagnosis


Book Description

The critical goal of nanobiosensors is to detect any biochemical and/or biophysical signal related to a specific disease at the level of a single or few molecules. Nanobiosensors have been successful for in vitro as well as in vivo detection of several biomolecules. It is expected that this technology will revolutionize point-of-care and personalized diagnostics, and will be extremely applicable for early disease detection. This book starts with a brief introduction of the biosensors and then focuses mainly on the emerging nanobiosensor technologies which are geared towards onsite clinical applications and those which can be used as a personalized diagnostic device. Written by an international team of researchers who are actively developing these technologies, Nanobiosensors for Personalized and Onsite Biomedical Diagnosis covers the latest advances in the field of biosensors and biosensing applications. This important book includes an assessment of some current and emerging technologies for detecting protein biomarkers and other potential cancer biomarkers and is essential reading for researchers and graduate students in the field. Medics including radiologists and clinicians will also find it invaluable.




Nanopores


Book Description

Nanopores are nanometer scale holes formed naturally by proteins or cells, and can be used for a variety of applications, including sequencing DNA and detecting anthrax. They can be integrated into artificially constructed encapsulated cells of silicon wafers while allowing small molecules like oxygen, glucose and insulin to pass, while keeping out large system molecules. "Nanopores: Sensing and Fundamental Biological Interactions" examines the emerging research directions surrounding nanopores such as genome sequencing and early disease detection using biomarker identification. Covering the applications of nanopores in genetics, proteomics, drug discovery, early disease detection and detection of emerging environmental threats, it is a must-have book for biomedicalengineers and research scientists.




Protein Microarray Technology


Book Description

This book is the first of its kind in the field of protein microarrays and addresses novel strategies for constructing highly functional and biocompatible microarrays for screening proteins. The list of authors consisting of world leading experts provide a roadmap for solving the complex challenges that are currently faced while monitoring protein-protein interactions over a wide range of microarray platforms. In doing so, they also offer a comprehensive overview of microarray surface chemistry, detection technologies, fabrication options for array development, and data analysis of numerous types of protein interactions. Topics covered include: -Types of biomolecular interactions -Surface chemistry -Detection technologies -Spotting technologies -Bioinformatics/data analysis. While primarily intended to serve as a reference for researchers and students embarking on the exciting fields of proteomics, drug discovery and clinical diagnostics, this technology is also expected to potentially impact the areas of food diagnostics, environmental monitoring and national security.




Plasmonic Sensors and their Applications


Book Description

Plasmonic Sensors and their Applications A practically-focused reference and guide on the use of plasmonic sensing as a faster and cheaper alternative to conventional sensing platforms Plasmons, the collective oscillations of electrons occurring at the interface between any two materials, are sensitive to changes in dielectric properties near metal surfaces. Plasmonic sensors enable the real-time study of unique surface properties by monitoring the effect of the material interaction at the sensor surface. Plasmonic sensing techniques offer fast, label-free analysis, and hold advantages over labelling techniques such as ELISA (enzyme-linked immunosorbent assay). Plasmonic Sensors and their Applications examines the development and use of highly sensitive and selective plasmonic sensing platforms in chemistry, biotechnology, and medicine. Contributions by an international panel of experts provide timely and in-depth coverage of both real-world applications and academic research in the dynamic field. The authors describe advances in nanotechnology, polymer chemistry, and biomedicine, explore new and emerging applications of plasmonic sensing, discuss future trends and potential research directions, and more. This authoritative volume: Demonstrates why plasmonic sensing is a profitable method for easy and label-free analysis in real-time Covers a variety of applications of plasmonic sensors, such as disease diagnostics, vitamin detection, and detection of chemical and biological warfare agents Includes a brief introduction to the history and development of plasmonic sensors Provides concise theory and background for every application covered in the text Plasmonic Sensors and their Applications is an invaluable resource for analytical chemists, biochemists, biotechnologists, protein and surface chemists, and advanced students of biotechnology.