The Scramjet Engine


Book Description

The renewed interest in high-speed propulsion has led to increased activity in the development of the supersonic combustion ramjet engine for hypersonic flight applications. In the hypersonic regime the scramjet engine's specific thrust exceeds that of other propulsion systems. This book, written by a leading researcher, describes the processes and characteristics of the scramjet engine in a unified manner, reviewing both theoretical and experimental research. The focus is on the phenomena that dictate the thermo-aerodynamic processes encountered in the scramjet engine, including component analyses and flowpath considerations; fundamental theoretical topics related to internal flow with chemical reactions and non-equilibrium effects, high-temperature gas dynamics, and hypersonic effects are included. Cycle and component analyses are further described, followed by flowpath examination. Finally, the book reviews experimental and theoretical capabilities and describes ground testing facilities and computational fluid dynamics facilities developed for the study of time-accurate, high-temperature aerodynamics.




Scramjet Combustion


Book Description

Scramjet Combustion explores the development of a high-speed scramjet engine operating in the supersonic/hypersonic range for various air and space transport applications. The book explains the basic structure, components, working cycle, and the relevant governing equations in a clear manner that speaks to both advanced and more novice audiences. Particular attention is paid to efficient air–fuel combustion, looking at both the underlying fundamentals of combustion as well strategies for obtaining optimum combustion efficiency. Methods for reaching the chemically correct air–fuel ratio, subsequent flame, and combustion stabilization as air enters at supersonic speed are also outlined. Further, it includes the continuous on-going efforts, innovations, and advances with respect to the design modification of scramjet combustors, as well as different strategies of fuel injections for obtaining augmented performance while highlighting the current and future challenges. - Outlines the fundamentals of scramjet engines including their basic structure and components, working cycle, governing equations, and combustion fundamentals affecting the combustion and mixing processes - Presents new design modifications of scramjet combustors and different fuel injection strategies including combined fuel injection approaches - Discusses core topics such as chemical kinetics in supersonic flow, fuel–air mixing methods, strategies for combating combustion difficulties, and subsequent flame and combustion stabilization that can be applied to scramjets - Describes the pedagogy for computational approaches in simulating supersonic flows







Unsteady Supersonic Combustion


Book Description

This book describes the unsteady phenomena needed to understand supersonic combustion. Following an initial chapter that introduces readers to the basic concepts in and classical studies on unsteady supersonic combustion, the book highlights recent studies on unsteady phenomena, which offer insights on e.g. interactions between acoustic waves and flames, flow dominating instability, ignition instability, flame flashback, and near-blowout-limit combustion. In turn, the book discusses in detail the fundamental mechanisms of these phenomena, and puts forward practical suggestions for future scramjet design.







Arc-heated Gas Flow Experiments for Hypersonic Propulsion Applications


Book Description

Although hydrogen is an attractive fuel for a hypersonic air-breathing vehicle in terms of reaction rate, flame temperature, and energy content per unit mass, the substantial tank volume required to store hydrogen imposes a drag penalty to performance that tends to offset these advantages. An alternative approach is to carry a hydrocarbon fuel and convert it on-board into a hydrogen-rich gas mixture to be injected into the engine combustors. To investigate this approach, the UTA Arc-Heated Wind Tunnel facility was modified to run on methane rather than the normally used nitrogen. Previously, this facility was extensively developed for the purpose of eventually performing experiments simulating scramjet engine flow along a single expansion ramp nozzle (SERN) in addition to more generalized applications. This formidable development process, which involved modifications to every existing subsystem along with the incorporation of new subsystems, is described in detail. Fortunately, only a minor plumbing reconfiguration was required to prepare the facility for the fuel reformation research. After a failure of the arc heater power supply, a 5.6 kW plasma-cutting torch was modified in order to continue the arc pyrolysis experiments. The outlet gas flow from the plasma torch was sampled and subsequently analyzed using gas chromatography. The experimental apparatus converted the methane feedstock almost completely into carbon, hydrogen and acetylene. A high yield of hydrogen, consisting of a product mole fraction of roughly 0.7, was consistently obtained. Unfortunately, the energy consumption of the apparatus was too excessive to be feasible for a flight vehicle. However, other researchers have pyrolyzed hydrocarbons using electric arcs with much less power input per unit mass.