Internal Combustion Engine in Theory and Practice, second edition, revised, Volume 2


Book Description

This revised edition of Taylor's classic work on the internal-combustion engine incorporates changes and additions in engine design and control that have been brought on by the world petroleum crisis, the subsequent emphasis on fuel economy, and the legal restraints on air pollution. The fundamentals and the topical organization, however, remain the same. The analytic rather than merely descriptive treatment of actual engine cycles, the exhaustive studies of air capacity, heat flow, friction, and the effects of cylinder size, and the emphasis on application have been preserved. These are the basic qualities that have made Taylor's work indispensable to more than one generation of engineers and designers of internal-combustion engines, as well as to teachers and graduate students in the fields of power, internal-combustion engineering, and general machine design.





Book Description




Assessment of Fuel Economy Technologies for Light-Duty Vehicles


Book Description

Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.







Introduction to Modeling and Control of Internal Combustion Engine Systems


Book Description

Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.







Fuel Economy


Book Description

Concern about the reduced availability and the increased cost of petroleum fuels prompted great efforts in recent years to reduce the fuel consumption of auto mobiles. The ongoing efforts to reduce fuel consumption have addressed many relevant factors, including increased engine performance, reduced friction, use of lightweight materials, and reduced aerodynamic drag. The results of the investigations assessing the various factors affecting fuel economy have been published in journals, conference proceedings, and in company and government reports. This proliferation of technical information makes it difficult for workers to keep abreast of aU developments. The material presented in this book brings together in a single volume much of the relevant materials, summarizes many of the state-of-the-art theories and data, and provides extensive lists of references. Thus, it is hoped that this book will be a useful reference for specialists and practicing engineers interested in the fuel economy of automobiles. J. C. HILLIARD o. S. SPRINGER vii CONTENTS 1. AUTOMOTIVE FUEL ECONOMY David Cole I. Introduction and Background. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . n. Fuel Economy Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 A. Engine................................................... 11 B. Drive Train. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 . . . . . . . . . . . . . . C. Vehicle Factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 . . . . . . . . . . . . . D. Operating Factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 . . . . . . . . . . . . E. Test Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 . . . . . . . . . . . . . . . . . 2. FUEL ECONOMY AND EMISSIONS J. T. Kummer I. Introduction .................................................. . 35 n. Emission Regulations .......................................... .







ERDA Energy Research Abstracts


Book Description




ERDA Energy Research Abstracts


Book Description