Ion Channels and Calcium Signaling in the Microcirculation


Book Description

Ion Channels and Calcium Signaling in the Microcirculation, Volume 85, the latest release in the Current Topics in Membranes series, highlights the latest advances in the expression and function of ion channels and calcium signaling in vascular smooth muscle and endothelial cells in resistance arteries, arterioles and capillaries, critical components of microcirculation, the business end of the cardiovascular system. Leading experts have contributed chapters, including Smooth muscle ion channels and calcium signaling in the regulation of striated muscle arteriolar tone; Endothelial KIR channels as a key component of shear stress-induced mechanotransduction; Endothelial TRPV4 channels and vasodilator reactivity, and much more. Additional sections cover cerebral capillary endothelial TRPA channels and the regulation of blood flow; Endothelial mineralocorticoid receptors and the regulation of TRPV4 function in cerebral parenchymal arterioles in hypertension; Subcellular calcium signaling and myogenic tone development in the retinal microcirculation; Microvascular KIR channels: Basis, properties and regulation by lipid and hemodynamic forces, Ion channels and calcium signaling in capillary endothelial cells; Ion channels and calcium signaling in bladder arterioles and resistance arteries, and Myoendothelial feedback and endothelial IKCa and sKCa channels.




Ion Channels and Calcium Signaling in the Microcirculation


Book Description

Ion Channels and Calcium Signaling in the Microcirculation, Volume 85, the latest release in the Current Topics in Membranes series, highlights the latest advances in the expression and function of ion channels and calcium signaling in vascular smooth muscle and endothelial cells in resistance arteries, arterioles and capillaries, critical components of microcirculation, the business end of the cardiovascular system. Leading experts have contributed chapters, including Smooth muscle ion channels and calcium signaling in the regulation of striated muscle arteriolar tone; Endothelial KIR channels as a key component of shear stress-induced mechanotransduction; Endothelial TRPV4 channels and vasodilator reactivity, and much more. Additional sections cover cerebral capillary endothelial TRPA channels and the regulation of blood flow; Endothelial mineralocorticoid receptors and the regulation of TRPV4 function in cerebral parenchymal arterioles in hypertension; Subcellular calcium signaling and myogenic tone development in the retinal microcirculation; Microvascular KIR channels: Basis, properties and regulation by lipid and hemodynamic forces, Ion channels and calcium signaling in capillary endothelial cells; Ion channels and calcium signaling in bladder arterioles and resistance arteries, and Myoendothelial feedback and endothelial IKCa and sKCa channels. - Presents the latest volume in the Current Topics in Membranes series, with a novel focus on smooth muscle and endothelial cells in the peripheral microcirculation - Provides authoritative contributions from an international team of leading experts actively studying the microcirculation - Includes a unique focus on regional heterogeneity in ion channel expression and function in the peripheral microcirculation




The Endothelium


Book Description

The endothelium, a monolayer of endothelial cells, constitutes the inner cellular lining of the blood vessels (arteries, veins and capillaries) and the lymphatic system, and therefore is in direct contact with the blood/lymph and the circulating cells. The endothelium is a major player in the control of blood fluidity, platelet aggregation and vascular tone, a major actor in the regulation of immunology, inflammation and angiogenesis, and an important metabolizing and an endocrine organ. Endothelial cells controls vascular tone, and thereby blood flow, by synthesizing and releasing relaxing and contracting factors such as nitric oxide, metabolites of arachidonic acid via the cyclooxygenases, lipoxygenases and cytochrome P450 pathways, various peptides (endothelin, urotensin, CNP, adrenomedullin, etc.), adenosine, purines, reactive oxygen species and so on. Additionally, endothelial ectoenzymes are required steps in the generation of vasoactive hormones such as angiotensin II. An endothelial dysfunction linked to an imbalance in the synthesis and/or the release of these various endothelial factors may explain the initiation of cardiovascular pathologies (from hypertension to atherosclerosis) or their development and perpetuation. Table of Contents: Introduction / Multiple Functions of the Endothelial Cells / Calcium Signaling in Vascular Cells and Cell-to-Cell Communications / Endothelium-Dependent Regulation of Vascular Tone / Conclusion / References







TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades


Book Description

Since the first TRP ion channel was discovered in Drosophila melanogaster in 1989, the progress made in this area of signaling research has yielded findings that offer the potential to dramatically impact human health and wellness. Involved in gateway activity for all five of our senses, TRP channels have been shown to respond to a wide range of st




Regulation of Coronary Blood Flow


Book Description

Research centering on blood flow in the heart continues to hold an important position, especially since a better understanding of the subject may help reduce the incidence of coronary arterial disease and heart attacks. This book summarizes recent advances in the field; it is the product of fruitful cooperation among international scientists who met in Japan in May, 1990 to discuss the regulation of coronary blood flow.




Inflammation and the Microcirculation


Book Description

The microcirculation is highly responsive to, and a vital participant in, the inflammatory response. All segments of the microvasculature (arterioles, capillaries, and venules) exhibit characteristic phenotypic changes during inflammation that appear to be directed toward enhancing the delivery of inflammatory cells to the injured/infected tissue, isolating the region from healthy tissue and the systemic circulation, and setting the stage for tissue repair and regeneration. The best characterized responses of the microcirculation to inflammation include impaired vasomotor function, reduced capillary perfusion, adhesion of leukocytes and platelets, activation of the coagulation cascade, and enhanced thrombosis, increased vascular permeability, and an increase in the rate of proliferation of blood and lymphatic vessels. A variety of cells that normally circulate in blood (leukocytes, platelets) or reside within the vessel wall (endothelial cells, pericytes) or in the perivascular space (mast cells, macrophages) are activated in response to inflammation. The activation products and chemical mediators released from these cells act through different well-characterized signaling pathways to induce the phenotypic changes in microvessel function that accompany inflammation. Drugs that target a specific microvascular response to inflammation, such as leukocyte-endothelial cell adhesion or angiogenesis, have shown promise in both the preclinical and clinical studies of inflammatory disease. Future research efforts in this area will likely identify new avenues for therapeutic intervention in inflammation. Table of Contents: Introduction / Historical Perspectives / Anatomical Considerations / Impaired Vasomotor Responses / Capillary Perfusion / Angiogenesis / Leukocyte-Endothelial Cell Adhesion / Platelet-Vessel Wall Interactions / Coagulation and Thrombosis / Endothelial Barrier Dysfunction / Epilogue / References




Glial Neurobiology


Book Description

"This volume is a very valuable and much needed contribution." –Quarterly Review of Biology AT LAST - A comprehensive, accessible textbook on glial neurobiology! Glial cells are the most numerous cells in the human brain but for many years have attracted little scientific attention. Neurophysiologists concentrated their research efforts instead, on neurones and neuronal networks because it was thought that they were the key elements responsible for higher brain function. Recent advances, however, indicate this isn’t exactly the case. Not only are astroglial cells the stem elements from which neurones are born, but they also control the development, functional activity and death of neuronal circuits. These ground-breaking developments have revolutionized our understanding of the human brain and the complex interrelationship of glial and neuronal networks in health and disease. Features of this book: an accessible introduction to glial neurobiology including an overview of glial cell function and its active role in neural processes, brain function and nervous system pathology an exploration of all the major types of glial cells including: the astrocytes, oligodendrocytes and microglia of the ACNS and Schwann cells of the peripheral nervous system; the book also presents a broad overview of glial receptors and ion channels an investigation into the role of glial cells in various types of brain diseases including stroke, neurodegenerative diseases such as Alzheimer's, Parkinson's and Alexander's disease, brain oedema, multiple sclerosis and many more a wealth of illustrations, including unique images from the authors' own libraries of images, describing the main features of glial cells Written by two leading experts in the field, Glial Neurobiology provides a concise, authoritative introduction to glial physiology and pathology for undergraduate/postgraduate neuroscience, biomedical, medical, pharmacy, pharmacology, and neurology, neurosurgery and physiology students. It is also an invaluable resource for researchers in neuroscience, physiology, pharmacology and pharmaceutics.




Calcium Signaling in Human Health and Diseases


Book Description

This book is a printed edition of the Special Issue "Calcium Signaling in Human Health and Diseases" that was published in IJMS




Lung Inflammation in Health and Disease, Volume II


Book Description

Lung diseases are leading causes of death and disability globally, with about 65 million people suffering from COPD, and 334 million from asthma. Each year, tens of millions of people develop and can die from lung infections such as pneumonia and TB. Systemic inflammation may induce and exacerbate local inflammatory diseases in the lungs, and local inflammation can in turn cause systemic inflammation. There is increasing evidence of the coexistence of systemic and local inflammation in patients suffering from asthma, COPD, and other lung diseases, and the co-morbidity of two or more local inflammatory diseases often occurs. For example, rheumatoid arthritis frequently occurs together with, and promotes the development of, pulmonary hypertension. This co-morbidity significantly impacts quality of life, and can result in death for some patients. Current treatment options for lung disease are neither always effective, nor condition-specific; there is a desperate need for novel therapeutics in the field. Additionally, the molecular and physiological significance of most major lung diseases is not well understood, which further impedes development of new treatments, especially in the case of coexistent lung diseases with other inflammatory diseases. Great progress has been made in recent years in many areas of the field, particularly in understanding the molecular geneses, regulatory mechanisms, signalling pathways, and cellular processes within lung disease, as well as basic and clinical technology, drug discovery, diagnoses, treatment options, and predictive prognoses. This is the first text to aggregate these developments. In two comprehensive volumes, experts from all over the world present state-of-the-art advances in the study of lung inflammation in health and disease. Contributing authors cover well-known as well as emerging topics in basic, translational, and clinical research, with the aim of providing researchers, clinicians, professionals, and students with new perspectives and concepts. The editors hope these books will also help to direct future research in lung disease and other inflammatory diseases, and result in the development of novel therapeutics.