Ion-Substituted Calcium Phosphates Coatings


Book Description

Coatings based on hydroxyapatite and calcium phosphates have a significant relevance in several research fields, such as biomaterials, cultural heritage, and water treatment, due to their characteristic properties. Hydroxyapatite can easily accommodate foreign ions, which can either be incorporated into the lattice, thanks to its specific lattice characteristics, or be adsorbed onto its surface. All these substitutions significantly alter the morphology, lattice parameters, and crystallinity of hydroxyapatite so they influence its main properties. These ion substitutions can be sought or can derive from substrate contaminations, which is an important aspect to be evaluated. Finally, this capability can be used to obtain hydroxyapatites with specific properties, such as antibacterial characteristics, among others. For these reasons, the aim of this Special Issue is to document current advances in the field of ion-substituted hydroxyapatites and highlight possible future perspectives regarding their use. Contributions in the form of original articles and review articles are presented, covering different areas of application.




Thin Calcium Phosphate Coatings for Medical Implants


Book Description

This book presents for the first time, the scattered novel results that have been achieved in very recent years in study on various thin calcium phosphate coatings produced by very diverse techniques. The comparison of thin calcium phosphate coatings with the thick plasma-sprayed ones is also included in the book. Readers will find a comprehensive book reviewing the state-of-the-art of the field with critical assessment of the achievements of the different preparation techniques.




Calcium Orthophosphates


Book Description

Due to a great chemical similarity with the biological calcified tissues, many calcium orthophosphates possess remarkable biocompatibility and bioactivity. Materials scientists use this property extensively to construct artificial bone grafts that are either entirely made of or only surface-coated with the biologically relevant calcium orthophospha




Handbook of Bioceramics and Biocomposites


Book Description

This handbook describes several current trends in the development of bioceramics and biocomposites for clinical use in the repair, remodelling, and regeneration of bone tissue. Comprehensive coverage of these materials allows fundamental aspects of the science and engineering to be seen in close relation to the clinical performance of dental and orthopaedic implants. Bioceramics and biocomposites appear to be the most dynamic area of materials development for both tissue engineering and implantable medical devices. Almost all medical specialties will continue to benefit from these developments, but especially dentistry and orthopaedics. In this Handbook, leading researchers describe the use of bionanomaterials to create new functionalities when interfaced with biological molecules or structures. Also described are technologies for bioceramics and biocomposites processing in order to fabricate medical devices for clinical use. Another important section of the book is dedicated to tissue regeneration with development of new matrices. A targeted or personalized treatment device reduces drug consumption and treatment expenses, resulting in benefits to the patient and cost reductions for public health systems. This authoritative reference on the state-of-the-art in the development and use of bioceramics and biocomposites can also serve as the basis of instructional course lectures for audiences ranging from advanced undergraduate students to post-graduates in materials science and engineering and biomedical engineering.




Bioceramics and Biocomposites


Book Description

Provides comprehensive coverage of the research into and clinical uses of bioceramics and biocomposites Developments related to bioceramics and biocomposites appear to be one the most dynamic areas in the field of biomaterials, with multiple applications in tissue engineering and medical devices. This book covers the basic science and engineering of bioceramics and biocomposites for applications in dentistry and orthopedics, as well as the state-of-the-art aspects of biofabrication techniques, tissue engineering, remodeling, and regeneration of bone tissue. It also provides insight into the use of bionanomaterials to create new functionalities when interfaced with biological molecules or structures. Featuring contributions from leading experts in the field, Bioceramics and Biocomposites: From Research to Use in Clinical Practice offers complete coverage of everything from extending the concept of hemopoietic and stromal niches, to the evolution of bioceramic-based scaffolds. It looks at perspectives on and trends in bioceramics in endodontics, and discusses the influence of newer biomaterials use on the structuring of the clinician’s attitude in dental practice or in orthopedic surgery. The book also covers such topics as biofabrication techniques for bioceramics and biocomposites; glass ceramics: calcium phosphate coatings; brain drug delivery bone substitutes; and much more. Presents the biggest trends in bioceramics and biocomposites relating to medical devices and tissue engineering products Systematically presents new information about bioceramics and biocomposites, developing diagnostics and improving treatments and their influence on the clinicians' approaches Describes how to use these biomaterials to create new functionalities when interfaced with biological molecules or structures Offers a range of applications in clinical practice, including bone tissue engineering, remodeling, and regeneration Delineates essential requirements for resorbable bioceramics Discusses clinical results obtained in dental and orthopedic applications Bioceramics and Biocomposites: From Research to Use in Clinical Practice is an excellent resource for biomaterials scientists and engineers, bioengineers, materials scientists, and engineers. It will also benefit mechanical engineers and biochemists who work with biomaterials scientists.




Recent Developments of Electrodeposition Coating


Book Description

This e-book presents a selection of papers focused on some novel aspects of electrodeposited coatings, in particular for medical applications. The biocoatings applied for surface modification of load-bearing implants are still being developed, especially for titanium implants, for which hundreds and thousands of possible technical solutions have been proposed using different techniques and materials. This book is a collection of papers that demonstrate appropriate attempts using various electrodeposition methods. The specific objectives are different, with several looking for improved bioactivity, another for antibacterial properties, and another for increased adhesion on the helix lines on dental implants. The e-book starts with a paper on the methodic development of electrodes for electrowinning. This is followed by paper on the real performance of the surface of dental implants, a subject not often addressed. The next paper focuses on electro-oxidation: a novel two-stage oxidation method, characteristic of the oxide layer on helix line of a model dental implant, and micro-arc oxidation of 3D printed titanium. The last paper focuses on coatings, describing the carbon nanotubes- (hydroxyapatite, chitosan), Eudragit-, and Fe-containing coatings. The e-book concludes with a review of all electrodeposition methods. It is a collection of papers describing novel results in electrodeposition biocoatings, which will be of interest for many scholars and researchers.




Handbook of Ionic Substituted Hydroxyapatites


Book Description

Handbook of Ionic Substituted Hydroxyapatites provides scientists and researchers with comprehensive information on the synthesis processes of hydroxyapatite, also explaining the application of substituted hydroxyapatite. The book's content is very structured and explanatory, starting with a detailed overview of biological apatite in bones and teeth, as well as a presentation of the analytical tools for hydroxyapatite. Bioceramics and the relative modern and emerging processing techniques are covered, as is 3-D printing, which has gained increasing importance within biomedical materials and in the use of hydroxyapatite in tissue engineering. Finally, the advantages and disadvantages of using ionic substitutions in clinical application are presented. Students and researchers in disciplines, such as Material Science, Ceramics, and Bioengineering will find this book to be very helpful in their work. It will also be a valuable resource for practitioners and surgeons in orthopedics, perio/implantology and maxillo-facial disciplines, and professionals working in R&D in ceramics and pharmaceuticals. - Provides responses to the lack of scientific information about hydroxyapatites for biomedical applications - Solves researchers' issues regarding phase changes with respect to substituted ions and how these substitutions can alter/improve the properties of stoichiometric hydroxyapatite - Explains modern clinical applications and the effects of apatites within biomedical applications - Includes both the advantages and disadvantages of using ionic substitutions in clinical application




Calcium Phosphate


Book Description

Calcium phosphates are key materials to sustain life on Earth as constituent of the gravity-defying bony skeletons of all vertebrates as well as the dentine and enamel materials of teeth. This book contains accounts on the historical development of the scientific knowledge gained on calcium orthophosphates, the latest information on the structure of carbonate-bearing hydroxyapatite, the role played by small amounts of molecular water residing in synthetic hydroxyapatite and bone mineral, as well as the nature of oxyhydroxyapatite and oxyapatite as intermediates during dehydroxylation of hydroxyapatite, pertinent information to unravel the complex processes relevant for plasma-sprayed calcium phosphate coatings on endoprosthetic implants. This book is recommended to industrial and academic professionals in the fields of medical technology, orthopedy, dentistry, biology, materials science, chemistry, environmental engineering, and mineralogy.




Advanced Ceramic Coatings for Biomedical Applications


Book Description

Advanced Ceramic Coatings for Biomedical Applications covers tissue engineering, scaffolds, implant and dental application, wound healing and adhesives. The book is one of four volumes that together provide a comprehensive resource in the field of Advanced Ceramic Coatings, also including titles covering: fundamentals, manufacturing, and classification; energy applications; and emerging applications. This books will be extremely useful for academic and industrial researchers and practicing engineers who need to find reliable and up-to-date information about recent progresses and new developments in the field of advanced ceramic coatings. It will also be of value to early career scientists providing background knowledge to the field. Smart ceramic coatings containing multifunctional components are now finding application in transportation and automotive industries, in electronics, and energy sectors, in aerospace and defense, and in industrial goods and healthcare. Their wide application and stability in harsh environments are only possible due to the stability of the inorganic components used. Ceramic coatings are typically silicon nitride, chromia, hafnia, alumina, alumina-magnesia, silica, silicon carbide, titania, and zirconia-based compositions. The increased demand for these materials and their application in energy, transportation, and the automotive industry, are considered, to be the main drivers. Provides comprehensive coverage of biomedical applications of advanced ceramic coatings Covers basic principles of surface chemistry and the fundamentals of ceramic materials and engineering Features the latest progress and recent technological developments Includes comparisons to other coating types (e.g., polymers, metals, and enamel) to demonstrate the potential, limitations, and differences Contains extensive case studies and worked examples




Biomaterials and Bionanotechnology


Book Description

Biomaterials and Bionanotechnology examines the current state of the field within pharmaceutical sciences and concisely explains the history of biomaterials including key developments. Written by experts in the field, this volume within the Advances in Pharmaceutical Product Development and Research series deepens understanding of biomaterials and bionanotechnology within drug discovery and drug development. Each chapter delves into a particular aspect of this fast-moving field to cover the fundamental principles, advanced methodologies and technologies employed by pharmaceutical scientists, researchers and pharmaceutical industries to transform a drug candidate or new chemical entity into a final administrable dosage form, with particular focus on biomaterials and bionanomaterials. This book provides a comprehensive examination suitable for researchers working in the pharmaceutical, cosmetics, biotechnology, food and related industries as well as advanced students in these fields. - Examines the most recent developments in biomaterials and nanomaterials for pharmaceutical sciences - Covers important topics, such as the fundamentals of polymers science, transportation and bio interaction of properties in nanomaterials across biological systems, and nanotechnology in tissue engineering as they pertain specifically to pharmaceutical sciences - Contains extensive references for further discovery on the role of biomaterials and nanomaterials in the drug discovery process