Ionic Liquids in Flow Assurance


Book Description

This book focuses on the application of ionic liquids in flow assurance in the oil and gas industry. It discusses their physiochemical properties, and considers the role of ionic liquids as gas hydrate inhibitors in offshore pipelines. Gas hydrate occurrence can pose a major threat to pipeline integrity. Therefore, different categories of gas hydrate inhibitors and the main factors influencing ionic liquids during gas hydrate inhibition are examined thoroughly. The use of ionic liquids as corrosion inhibitors, their application in flow assurance industry to mitigate corrosion, and factors affecting their performance are discussed. Finally, the applications of ionic liquids in wax, scale and asphaltenes deposition control is explored. The extensive discussion of ionic liquids in flow assurance mean that this book will be of use to researchers, engineers, and industry professionals in upstream processing of the oil and gas sector.




Essentials of Flow Assurance Solids in Oil and Gas Operations


Book Description

Flow assurance solids deposition is one of the main challenges in oil and gas production operations with millions of dollars spent annually on their mitigation. Essentials of Flow Assurance Solids in Oil and Gas Operations works as an all-inclusive reference for engineers and researchers, covering all the different types of solids that are commonly encountered in oil and gas fields. Structured to flow through real-world operations, the reference branches through each solid deposit problem where the root causes are as well as modeling, monitoring, characterization, and management strategies, all comprehensively reviewed in the light of contemporary research breakthroughs. Backed by several field case studies, Essentials of Flow Assurance Solids in Oil and Gas Operations gives petroleum and reservoir engineers a resource to correlate between the theoretical fundamentals and field practical applications allowing for sustainable and optimal operations. - Provides the main operations of oil and gas fields, the characteristics of produced fluids, and the main flow assurance challenges - Furnishes the basic principles of deposits formation and mitigation, starting with a full investigation of the problems, then mechanisms, causes, predictions, modelling, and sample analysis, followed by management - Distinctively discusses the operational and environmental implications of flow assurance solids and their management using chemical and nonchemical methods - Teaches engineers through impactful visuals and data sets included in every chapter




Recent Advances in Ionic Liquids


Book Description

Recent Advances in Ionic Liquids contains research on the preparation, characterization, and potential applications of stable ionic liquids (ILs). ILs are a class of low- and stable-melting point, ionic compounds that have a variety of properties allowing many of them to be sustainable green solvents. It is promising novel research from top to bottom and has received a lot of interest over the last few decades. It covers the advanced topics of physical, catalytic, chemical, polymeric, and potential applications of ILs. This book features interesting reports on cutting-edge science and technology related to the preparation, characterization, polymerization, and potential applications of ILs. This potentially unique work offers various approaches on the R




Nanotechnology-Based Industrial Applications of Ionic Liquids


Book Description

Numerous solvents used in chemical processes have poisonous and unsafe properties that pose significant ecological concerns ranging from atmospheric emissions to the contamination of water effluents. To combat these ecological threats, over the course of the past two decades, the field of green chemistry has grown to develop more natural reaction processes and techniques involving the use of nonconventional solvents to diminish waste solvent production and thus decrease negative impact on the environment. Ionic liquids in particular are more environmentally friendly substitutes to conventional solvents, and as such, have seen more widespread use in the past decade. They have been used in such processes as extraction, separation, purification of organic, inorganic, and bioinorganic compounds, reaction media in biochemical and chemical catalysis, green organic and drug synthesis, among other industrial applications. Thus, in proving themselves a suitable greener media for economic viability in chemical processes, ionic liquids are leading to more sustainable development. This edition explores the application of ionic liquids as a green solvent. It contains a state-of-the-art overview on ionic liquids as green solvents for chemical processes and techniques, as well as some of their useful industrial applications.




Machine Learning and Flow Assurance in Oil and Gas Production


Book Description

This book is useful to flow assurance engineers, students, and industries who wish to be flow assurance authorities in the twenty-first-century oil and gas industry. The use of digital or artificial intelligence methods in flow assurance has increased recently to achieve fast results without any thorough training effectively. Generally, flow assurance covers all risks associated with maintaining the flow of oil and gas during any stage in the petroleum industry. Flow assurance in the oil and gas industry covers the anticipation, limitation, and/or prevention of hydrates, wax, asphaltenes, scale, and corrosion during operation. Flow assurance challenges mostly lead to stoppage of production or plugs, damage to pipelines or production facilities, economic losses, and in severe cases blowouts and loss of human lives. A combination of several chemical and non-chemical techniques is mostly used to prevent flow assurance issues in the industry. However, the use of models to anticipate, limit, and/or prevent flow assurance problems is recommended as the best and most suitable practice. The existing proposed flow assurance models on hydrates, wax, asphaltenes, scale, and corrosion management are challenged with accuracy and precision. They are not also limited by several parametric assumptions. Recently, machine learning methods have gained much attention as best practices for predicting flow assurance issues. Examples of these machine learning models include conventional approaches such as artificial neural network, support vector machine (SVM), least square support vector machine (LSSVM), random forest (RF), and hybrid models. The use of machine learning in flow assurance is growing, and thus, relevant knowledge and guidelines on their application methods and effectiveness are needed for academic, industrial, and research purposes. In this book, the authors focus on the use and abilities of various machine learning methods in flow assurance. Initially, basic definitions and use of machine learning in flow assurance are discussed in a broader scope within the oil and gas industry. The rest of the chapters discuss the use of machine learning in various flow assurance areas such as hydrates, wax, asphaltenes, scale, and corrosion. Also, the use of machine learning in practical field applications is discussed to understand the practical use of machine learning in flow assurance.




Advances in Natural Gas: Formation, Processing, and Applications. Volume 8: Natural Gas Process Modelling and Simulation


Book Description

Advances in Natural Gas: Formation, Processing, and Applications is a comprehensive eight-volume set of books that discusses in detail the theoretical basics and practical methods of various aspects of natural gas from exploration and extraction, to synthesizing, processing and purifying, producing valuable chemicals and energy. The volumes introduce transportation and storage challenges as well as hydrates formation, extraction, and prevention Volume 8 titled Process Modelling and Simulation discusses various aspects of natural gas related processes from modelling and simulation point of view. This includes modelling of natural gas sweetening, dehydration and other impurities removal processes and apparatus as well as simulation of processes and apparatus dealt with producing chemicals and energy from natural gas.The book introduces modelling and simulation of natural gas hydrate related processes and covers modelling basics, numerical approaches and optimization techniques, which provides a deeper understanding of the subject. - Introduces modelling and simulation methods for natural gas sweetening and purification - Describes modelling and simulation procedures of producing chemicals and energy from natural gas - Discusses theoretical basics and models of natural gas hydrates




Flow Assurance


Book Description

Petroleum engineers search through endless sources to understand oil and gas chemicals, find problems, and discover solutions while operations are becoming more unconventional and driving towards more sustainable practices. The Oil and Gas Chemistry Management Series brings an all-inclusive suite of tools to cover all the sectors of oil and gas chemicals from drilling to production, processing, storage, and transportation. The second reference in the series, Flow Assurance, delivers the critical chemical oilfield basics while also covering latest research developments and practical solutions. Organized by the type of problems and mitigation methods, this reference allows the engineer to fully understand how to effectively control chemistry issues, make sound decisions, and mitigate challenges ahead. Basics include root cause, model prediction and laboratory simulation of the major chemistry related challenges during oil and gas productions, while more advanced discussions cover the chemical and non-chemical mitigation strategies for more efficient, safe and sustainable operations. Supported by a list of contributing experts from both academia and industry, Flow Assurance brings a necessary reference to bridge petroleum chemistry operations from theory into safer and cost-effective practical applications. - Offers full range of oilfield production chemistry issues, including chapters focused on hydrate and organic deposition control, liquid blockage mitigation, and abiotic and microbially influenced corrosion prevention - Gain effective control on problems and mitigation strategies from industry list of experts and contributors - Delivers both up to date research developments and practical applications, bridging between theory and practice




Practical Aspects of Flow Assurance in the Petroleum Industry


Book Description

With easily accessible oil reserves dwindling, petroleum engineers must have a sound understanding of how to access technically challenging resources, especially in the deepwater environment. These technically challenging resources bring with them complexities around fluid flow not normally associated with conventional production systems, and engineers must be knowledgeable about navigating these complexities. Practical Aspects of Flow Assurance in the Petroleum Industry aims to provide practical guidance on all aspects of flow assurance to offer readers a ready reference on how to ensure uninterrupted transport of processed fluids throughout the flow infrastructure by covering all practical aspects of flow assurance, being written in such a way that any engineer dealing with the oil and gas industry will be able to understand the material, containing solved examples on most topics, placing equal emphasis on experimental techniques and modeling methods, and devoting an entire chapter to the analysis and interpretation of published case studies. With its balance of theory and practical applications, this work provides petroleum engineers from a variety of backgrounds with the information needed to maintain and enhance productivity.




Gas Hydrate in Water Treatment


Book Description

GAS HYDRATE IN WATER TREATMENT Explores current progress in the expanding field of gas hydrate-based desalination As potable water shortages continue to affect billions of people worldwide, seawater desalination and wastewater treatment have the potential to meet freshwater demands in the near future. Gas hydrate-based desalination, a process which requires CO2 and water as solvent, has become an increasingly popular approach—desalination with hydrates is environmentally friendly and can produce cheaper desalted water than other existing conventional technologies. Gas Hydrate in Water Treatment: Technological, Economic, and Industrial Aspects provides detailed, up-to-date reference to the application of gas hydrates in wastewater and seawater desalination treatment. Edited by experienced researchers in the field, this comprehensive volume describes the fundamental aspects of desalination and summarizes the latest research on gas hydrate-based desalination. The authors address a broad range of key topics, including issues related to water scarcity, post-treatment of desalinated water using both conventional and new technologies, hydrate-based desalination methods driven by renewable energy sources, and more. Provides thorough coverage of the technological, waste brine management, economic, and renewable energy and remineralization aspects of gas hydrate-based wastewater treatment Describes the energetic, economic, and environmental impact of gas hydrate desalination Explains the core concepts of gas hydrate-based desalination to help readers evaluate the performance of existing desalination processes Discusses the advantages and challenges of hydrate-based water treatment Compares conventional and gas hydrate technologies used in water treatment Reviews the most recent research in gas hydrate-based desalination Gas Hydrate in Water Treatment: Technological, Economic, and Industrial Aspects is an essential resource for all academics, researchers, process engineers, designers, industry professionals, and advanced students in the field.




Advances in Natural Gas: Formation, Processing, and Applications. Volume 3: Natural Gas Hydrates


Book Description

Advances in Natural Gas: Formation, Processing, and Applications. Volume 3: Natural Gas Hydrates comprises an extensive eight-volume series delving into the intricate realms of both the theoretical fundamentals and practical methodologies associated with the various facets of natural gas. Encompassing the entire spectrum from exploration and extraction to synthesis, processing, purification, and the generation of valuable chemicals and energy, these volumes also navigate through the complexities of transportation, storage challenges, hydrate formation, extraction, and prevention. In Volume 3 titled Natural Gas Hydrates, the fundamental aspects of natural gas hydrates, their associated disasters, and case studies are introduced. This book delves into the intricate details of hydrate structures, physio-chemical properties, and thermodynamics, offering a comprehensive understanding. This volume also explores hydrates as an energy source and covers their dissociation methods. A significant focus is placed on the challenges of natural gas hydrates formation in pipelines, accompanied by prevention techniques. Additionally, this book discusses the discovery and extraction of natural gas hydrates from oceans, shedding light on related geophysical indicators. - Introduces characteristics and properties of natural gas hydrates - Describes pipeline natural gas hydrates and prevention methods - Discusses oceanic natural gas hydrates and extraction methods