Ionospheric Data in Japan


Book Description







Ionospheric Radio


Book Description

This introductory text replaces two earlier publications (Davies 1965, 1969). Among the topics: characteristics of waves and plasma, the solar-terrestrial system, the Appleton formula, radio soundings of the ionosphere, morphology of the ionosphere, oblique propagation, importance of amplitude and phase, earth-space propagation. Annotation copyrighted by Book News, Inc., Portland, OR




Ionospheric Space Weather


Book Description

This monograph is the outcome of an American Geophysical Union Chapman Conference on longitude and hemispheric dependence of ionospheric space weather, including the impact of waves propagating from the lower atmosphere. The Chapman Conference was held in Africa as a means of focusing attention on an extensive geographic region where observations are critically needed to address some of the fundamental questions of the physical processes driving the ionosphere locally and globally. The compilation of papers from the conference describes the physics of this system and the mechanisms that control ionospheric space weather in a combination of tutorial-like and focused articles that will be of value to the upper atmosphere scientific community in general and to ongoing global magnetosphere-ionosphere-thermosphere (MIT) modeling efforts in particular. A number of articles from each science theme describe details of the physics behind each phenomenon that help to solve the complexity of the MIT system. Because this volume is an outcome of the research presented at this first space science Chapman Conference held in Africa, it has further provided an opportunity for African scientists to communicate their research results with the international community. In addition, the meeting and this conference volume will greatly enhance the space science education and research interest in the African continent and around the world. Ionospheric Space Weather includes articles from six science themes that were discussed at the Chapman Conference in 2012. These include: Hemispherical dependence of magnetospheric energy injection and the thermosphere-ionosphere response Longitude and hemispheric dependence of storm-enhanced densities (SED) Response of the thermosphere and ionosphere to variability in solar radiation Longitude spatial structure in total electron content and electrodynamics Temporal response to lower-atmosphere disturbances Ionospheric irregularities and scintillation Ionospheric Space Weather: Longitude Dependence and Lower Atmosphere Forcing will be useful to both active researchers and advanced graduate students in the field of physics, geophysics, and engineering, especially those who are keen to acquire a global understanding of ionospheric phenomena, including observational information from all longitude sectors across the globe.







Ionospheric Effects of Solar Flares


Book Description

Sudden Ionospheric Disturbances resulting from an interaction of the Solar Flare radiation with the constituents of the upper atmosphere constitute one of the three major aspects of ground level monitoring of solar flares -the other two being optical observations of flares, and the observations of solar bursts in radio wavelengths. SIDs, therefore, form a major part of flare monitoring programme in many observatories. Unlike the other two, however, the ionospheric effects of flares provide one major additional source of interest - the reaction of the ionospheric plasma to an impulsive ionization. The high atmosphere provides a low pressure laboratory without walls in which a host of reactions occur between electrons, ions and neutral particles. The resulting products and their distributions may bear no resemblance to those of the primary neutral constituents or their direct ionization products. The variations with the time of the day, with season and with solar activity that form the bulk of the ionospheric measurements are too slow to allow any insight into the nature of these ionospheric reactions whose lifetimes are often very short. The relaxation time of the ionospheric ionization is only a few minutes or fraction of a minute in the lower ionosphere and in the E-region and is about 30 min to an hour at 300 km. The flares provide a sudden short impulse comparable to these time scales.







Infrasound Monitoring for Atmospheric Studies


Book Description

The use of infrasound to monitor the atmosphere has, like infrasound itself, gone largely unheard of through the years. But it has many applications, and it is about time that a book is being devoted to this fascinating subject. Our own involvement with infrasound occurred as graduate students of Prof. William Donn, who had established an infrasound array at the Lamont-Doherty Geological Observatory (now the Lamont-Doherty Earth Observatory) of Columbia University. It was a natural outgrowth of another major activity at Lamont, using seismic waves to explore the Earth’s interior. Both the atmosphere and the solid Earth feature velocity (seismic or acoustic) gradients in the vertical which act to refract the respective waves. The refraction in turn allows one to calculate the respective background structure in these mediums, indirectly exploring locations that are hard to observe otherwise. Monitoring these signals also allows one to discover various phenomena, both natural and man-made (some of which have military applications).







Ionospheric Data


Book Description