Ionospheric Delay Investigation and Forecasting


Book Description

This book highlights ionospheric delay investigation and forecasting using GPS-TEC measurements in the equatorial region. The ionospheric delay error is the main source of error and a major concern for GPS applications as it corrupts the positioning and time transfer results. In the equatorial region, the variations of the total electron content (TEC) and the ionospheric delay are recognized to be high when compared with other regions such as mid-latitude and high latitude. The investigation and forecasting of trans-ionospheric propagation errors are essential for precise measurement and further contribute valuable information to satellite and space probe navigation, space geodesy, radio astronomy and other applications.




Ionospheric Delay Investigation and Forecasting


Book Description

This book highlights ionospheric delay investigation and forecasting using GPS-TEC measurements in the equatorial region. The ionospheric delay error is the main source of error and a major concern for GPS applications as it corrupts the positioning and time transfer results. In the equatorial region, the variations of the total electron content (TEC) and the ionospheric delay are recognized to be high when compared with other regions such as mid-latitude and high latitude. The investigation and forecasting of trans-ionospheric propagation errors are essential for precise measurement and further contribute valuable information to satellite and space probe navigation, space geodesy, radio astronomy and other applications.




Ionospheric Prediction and Forecasting


Book Description

This book describes how to predict and forecast the state of planet Earth’s ionosphere under quiet and disturbed conditions in terms of dynamical processes in the weakly ionized plasma media of the upper atmosphere and their relation to available modern measurements and modelling techniques. It explains the close relationship between the state of the media and the radio wave propagation conditions via this media. The prediction and forecasting algorithms, methods and models are oriented towards providing a practical approach to ionospherically dependent systems design and engineering. Proper understanding of the ionosphere is of fundamental practical importance because it is an essential part of telecommunication and navigation systems that use the ionosphere to function or would function much better in its nonappearance on the Earth and on any planet with an atmosphere.




Ionospheric Space Weather


Book Description

This book describes essential concepts of, and the status quo in, the field of ionospheric space weather. It explains why our society on planet Earth and moving outwards into space cannot work safely, function efficiently, or progress steadily without committed and comprehensive research initiatives addressing space weather. These initiatives must provide space environment specifications, warnings, and forecasts, all of which need to be timely, accurate and reliable. Cause and effect models of the Earth’s ionosphere are discussed in terms of the spatial and temporal dimensions of background variability, storms, gradients, irregularities, and waves in both current and long-term research activities. Starting from dynamic processes on the Sun, in the interplanetary medium, and in the Earth’s magnetosphere, ionosphere, and atmosphere, the text focuses on the dominant features of the plasma medium under normal and extreme conditions over the European zone during the last few Solar Cycles. One of the book’s most unique features is a series of fundamental examples that offer profound insights into ionospheric climate and weather. Various approaches for acquiring and disseminating the necessary data and forecasting analyses are discussed, and interesting analogies are observed between terrestrial and space weather – both of which could produce lasting social consequences, with not only academic but also concrete economic implications. The book’s primary goal is to foster the development of ionospheric space weather products and services that are capable of satisfying the ever-growing demand for space-based technology, and are ready for the society of the not-so-distant future.




Ionosphere - New Perspectives


Book Description

The ionosphere is a layer of the Earth's atmosphere that extends from about 50 km to 1000 km above the Earth's surface. It is ionized by solar radiation, which creates ions and free electrons in the upper atmosphere. These ions and electrons reflect radio waves back to the Earth's surface, allowing long-distance radio communication as well as absorption of harmful solar radiation. Ionospheric conductivity monitoring assesses the state of the ionosphere and improves the accuracy of satellite communications. This book is organized into two sections on the influence and impact of transient or orbiting humanmade objects into the ionosphere and the monitoring and modeling of the temporal evolution of the ionosphere. The information presented will lead to a better understanding and forecasting of the ionosphere’s dynamic.







The Prediction of Ionospheric Conditions


Book Description

The ionosphere of the Earth has been actively studied since the 1920's, following the discovery of ground radio-sounding. By means of this method results were ohtained by an international network of ionospheric stations, in particular, by the successful implementation of a number of rigorously planned international scientific research programs,'" enabling the collection of extensive experimental material on some of the most important parameters of the ionosphere - the critical freLjuencies of E-, Fl and F2-layers. Comprehensive analyses of these observation data give a fairly complete picture of the various changes taking place in the principal ionospheric layers at different points on our globe. Another important aspect of the study of the ionosphere, which has been in progress for the past three decades, is an extensive program of in situ determinations of the various physical parameters - first using rockets, and subsequently artificial satellites. The data thus obtained on the principal ionizing agent - short-wave solar radiation - and on the physical conditions prevailing in the upper atmosphere and in the ionosphere at different altitudes, allow the proposal of a self-consistent mechanism of ionosphere formation. A general outline of the theory of ionosphere formation at different altitudes is now complete. Its application to specific cases, dependent on a more accurate determination of input parameters to give solutions valid for a definite set of conditions etc., is yet to be accomplished. The use of artificial satellites in cosmic research yielded abundant scientific data.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Report on Research at AFCRL.


Book Description