Microwave and RF Vacuum Electronic Power Sources


Book Description

Get up-to-speed on the theory, principles and design of vacuum electron devices.




Argonne List of Serials


Book Description




History of Wireless


Book Description

Important new insights into how various components and systems evolved Premised on the idea that one cannot know a science without knowing its history, History of Wireless offers a lively new treatment that introduces previously unacknowledged pioneers and developments, setting a new standard for understanding the evolution of this important technology. Starting with the background-magnetism, electricity, light, and Maxwell's Electromagnetic Theory-this book offers new insights into the initial theory and experimental exploration of wireless. In addition to the well-known contributions of Maxwell, Hertz, and Marconi, it examines work done by Heaviside, Tesla, and passionate amateurs such as the Kentucky melon farmer Nathan Stubblefield and the unsung hero Antonio Meucci. Looking at the story from mathematical, physics, technical, and other perspectives, the clearly written text describes the development of wireless within a vivid scientific milieu. History of Wireless also goes into other key areas, including: The work of J. C. Bose and J. A. Fleming German, Japanese, and Soviet contributions to physics and applications of electromagnetic oscillations and waves Wireless telegraphic and telephonic development and attempts to achieve transatlantic wireless communications Wireless telegraphy in South Africa in the early twentieth century Antenna development in Japan: past and present Soviet quasi-optics at near-mm and sub-mm wavelengths The evolution of electromagnetic waveguides The history of phased array antennas Augmenting the typical, Marconi-centered approach, History of Wireless fills in the conventionally accepted story with attention to more specific, less-known discoveries and individuals, and challenges traditional assumptions about the origins and growth of wireless. This allows for a more comprehensive understanding of how various components and systems evolved. Written in a clear tone with a broad scientific audience in mind, this exciting and thorough treatment is sure to become a classic in the field.




Microwave and RF Engineering


Book Description

An essential text for both students and professionals, combining detailed theory with clear practical guidance This outstanding book explores a large spectrum of topics within microwave and radio frequency (RF) engineering, encompassing electromagnetic theory, microwave circuits and components. It provides thorough descriptions of the most common microwave test instruments and advises on semiconductor device modelling. With examples taken from the authors' own experience, this book also covers: network and signal theory; electronic technology with guided electromagnetic propagation; microwave circuits such as linear and non-linear circuits, resonant circuits and cavities, monolithic microwave circuits (MMICs), wireless architectures and integrated circuits; passive microwave components, control components; microwave filters and matching networks. Simulation files are included in a CD Rom, found inside the book. Microwave and RF Engineering presents up-to-date research and applications at different levels of difficulty, creating a useful tool for a first approach to the subject as well as for subsequent in-depth study. It is therefore indispensable reading for advanced professionals and designers who operate at high frequencies as well as senior students who are first approaching the subject.




Electromagnetic Waveguides and Transmission Lines


Book Description

This monograph deals with the theoretical aspects of the circuit modelling of high-frequency electromagnetic structures using the Lorentz reciprocity theorem. This is the first book to cover the generalization from closed structures to open-boundary waveguides and circuit structures. The author has developed a new way to represent a general waveguide by transmission lines: and was awarded the Microwave Prize of the IEEE for this work. The first part of the book discusses the construction of transmission line models for waveguide structures. Then the incidence of external electromagnetic waves on high-frequency structures is studied, and finally the concepts derived in the earlier parts of the book are generalized to reciprocal and non-reciprocal anisotropic, bi-isotropic, and bianisotropic materials.




Handbook of Nanoscience, Engineering, and Technology


Book Description

In his 1959 address, "There is Plenty of Room at the Bottom," Richard P. Feynman speculated about manipulating materials atom by atom and challenged the technical community "to find ways of manipulating and controlling things on a small scale." This visionary challenge has now become a reality, with recent advances enabling atomistic-level tailoring and control of materials. Exemplifying Feynman’s vision, Handbook of Nanoscience, Engineering, and Technology, Third Edition continues to explore innovative nanoscience, engineering, and technology areas. Along with updating all chapters, this third edition extends the coverage of emerging nano areas even further. Two entirely new sections on energy and biology cover nanomaterials for energy storage devices, photovoltaics, DNA devices and assembly, digital microfluidic lab-on-a-chip, and much more. This edition also includes new chapters on nanomagnet logic, quantum transport at the nanoscale, terahertz emission from Bloch oscillator systems, molecular logic, electronic optics in graphene, and electromagnetic metamaterials. With contributions from top scientists and researchers from around the globe, this color handbook presents a unified, up-to-date account of the most promising technologies and developments in the nano field. It sets the stage for the next revolution of nanoscale manufacturing—where scalable technologies are used to manufacture large numbers of devices with complex functionalities.