Iron as Therapeutic Targets in Human Diseases


Book Description

Iron is an essential element for almost all organisms, a cofactor playing a crucial role in a number of vital functions, including oxygen transport, DNA synthesis, and respiration. However, its ability to exchange electrons renders excess iron potentially toxic, since it is capable of catalyzing the formation of highly poisonous free radicals. As a consequence, iron homeostasis is tightly controlled by sophisticated mechanisms that have been partially elucidated. Because of its biological importance, numerous disorders have been recently linked to the deregulation of iron homeostasis, which include not only the typical disorders of iron overload and deficiency but also cancer and neurodegenerative diseases. This leads iron metabolism to become an interesting therapeutic target for novel pharmacological treatments against these diseases. Several therapies are currently under development for hematological disorders, while other are being considered for different pathologies. The therapeutic targeting under study includes the hepcidin/ferroportin axis for the regulation of systemic iron homeostasis, complex cytosolic machineries for the regulation of the intracellular iron status and its association with oxidative damage, and reagents exploiting proteins of iron metabolism such as ferritin and transferrin receptor. A promising potential target is a recently described form of programmed cell death named ferroptosis, in which the role of iron is essential but not completely clarified. This Special Issue has the aim to summarize the state-of-the-art, and the latest findings published in the iron field, as well as to elucidate future directions.




Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc


Book Description

This volume is the newest release in the authoritative series issued by the National Academy of Sciences on dietary reference intakes (DRIs). This series provides recommended intakes, such as Recommended Dietary Allowances (RDAs), for use in planning nutritionally adequate diets for individuals based on age and gender. In addition, a new reference intake, the Tolerable Upper Intake Level (UL), has also been established to assist an individual in knowing how much is "too much" of a nutrient. Based on the Institute of Medicine's review of the scientific literature regarding dietary micronutrients, recommendations have been formulated regarding vitamins A and K, iron, iodine, chromium, copper, manganese, molybdenum, zinc, and other potentially beneficial trace elements such as boron to determine the roles, if any, they play in health. The book also: Reviews selected components of food that may influence the bioavailability of these compounds. Develops estimates of dietary intake of these compounds that are compatible with good nutrition throughout the life span and that may decrease risk of chronic disease where data indicate they play a role. Determines Tolerable Upper Intake levels for each nutrient reviewed where adequate scientific data are available in specific population subgroups. Identifies research needed to improve knowledge of the role of these micronutrients in human health. This book will be important to professionals in nutrition research and education.




Nutrition and HIV


Book Description

The world continues to lose more than a million lives each year to the HIV epidemic, and nearly two million individuals were infected with HIV in 2017 alone. The new Sustainable Development Goals, adopted by countries of the United Nations in September 2015, include a commitment to end the AIDS epidemic by 2030. Considerable emphasis on prevention of new infections and treatment of those living with HIV will be needed to make this goal achievable. With nearly 37 million people now living with HIV, it is a communicable disease that behaves like a noncommunicable disease. Nutritional management is integral to comprehensive HIV care and treatment. Improved nutritional status and weight gain can increase recovery and strength of individuals living with HIV/AIDS, improve dietary diversity and caloric intake, and improve quality of life. This book highlights evidence-based research linking nutrition and HIV and identifies research gaps to inform the development of guidelines and policies for the United Nations’ Sustainable Development Goals. A comprehensive approach that includes nutritional interventions is likely to maximize the benefit of antiretroviral therapy in preventing HIV disease progression and other adverse outcomes in HIV-infected men and women. Modification of nutritional status has been shown to enhance the quality of life of those suffering HIV/AIDS, both physically in terms of improved body mass index and immunological markers, and psychologically, by improving symptoms of depression. While the primary focus for those infected should remain on antiretroviral treatment and increasing its availability and coverage, improvement of nutritional status plays a complementary role in the management of HIV infection.




Iron as Therapeutic Targets in Human Diseases


Book Description

Iron is an essential element for almost all organisms, a cofactor playing a crucial role in a number of vital functions, including oxygen transport, DNA synthesis, and respiration. However, its ability to exchange electrons renders excess iron potentially toxic, since it is capable of catalyzing the formation of highly poisonous free radicals. As a consequence, iron homeostasis is tightly controlled by sophisticated mechanisms that have been partially elucidated. Because of its biological importance, numerous disorders have been recently linked to the deregulation of iron homeostasis, which include not only the typical disorders of iron overload and deficiency but also cancer and neurodegenerative diseases. This leads iron metabolism to become an interesting therapeutic target for novel pharmacological treatments against these diseases. Several therapies are currently under development for hematological disorders, while other are being considered for different pathologies. The therapeutic targeting under study includes the hepcidin/ferroportin axis for the regulation of systemic iron homeostasis, complex cytosolic machineries for the regulation of the intracellular iron status and its association with oxidative damage, and reagents exploiting proteins of iron metabolism such as ferritin and transferrin receptor. A promising potential target is a recently described form of programmed cell death named ferroptosis, in which the role of iron is essential but not completely clarified. This Special Issue has the aim to summarize the state-of-the-art, and the latest findings published in the iron field, as well as to elucidate future directions.




Iron Deficiency Anemia


Book Description

This book summarizes information related to public health measures on the prevention, detection, and management of iron deficiency anemia. It presents draft guidelines and recommendations related to this area, as applicable in primary health care and public health clinic settings, and it formulates recommendations for research. This volume is intended both to provide a common frame of reference for health professionals in preventing and treating iron deficiency anemia and to enable the U.S. Centers for Disease Control and Prevention to prepare national guidelines and recommendations for the prevention and control of iron deficiency anemia.




Trace Elements and Minerals in Health and Longevity


Book Description

This book describes the role of trace elements in health and longevity, pursuing a biogerontological approach. It offers essential information on the impact of trace elements on molecular and physiological processes of aging, and on their impact on health in connection with aging. The major topics covered in its 11 chapters, each dedicated to a specific trace element or mineral, are: a) Role of the element in species longevity, b) Recommended intake for longevity in animal species and in the elderly, c) Deficiency and age-related disease, d) Excess/toxicity and age-related disease, and e) Interactions with drugs prescribed in the elderly. Clinical, animal and other laboratory models of interest in aging are included, which enable a more in-depth analysis to be made. The respective chapters are a mixture of overviews and more in-depth reviews in which the mechanisms of aging are described from the point of view of their specific interactions with trace elements and minerals.




Iron as Therapeutic Targets in Human Diseases Volume 1


Book Description

Iron is an essential element for almost all organisms, a cofactor playing a crucial role in a number of vital functions, including oxygen transport, DNA synthesis, and respiration. However, its ability to exchange electrons renders excess iron potentially toxic, since it is capable of catalyzing the formation of highly poisonous free radicals. As a consequence, iron homeostasis is tightly controlled by sophisticated mechanisms that have been partially elucidated. Because of its biological importance, numerous disorders have been recently linked to the deregulation of iron homeostasis, which include not only the typical disorders of iron overload and deficiency but also cancer and neurodegenerative diseases. This leads iron metabolism to become an interesting therapeutic target for novel pharmacological treatments against these diseases. Several therapies are currently under development for hematological disorders, while other are being considered for different pathologies. The therapeutic targeting under study includes the hepcidin/ferroportin axis for the regulation of systemic iron homeostasis, complex cytosolic machineries for the regulation of the intracellular iron status and its association with oxidative damage, and reagents exploiting proteins of iron metabolism such as ferritin and transferrin receptor. A promising potential target is a recently described form of programmed cell death named ferroptosis, in which the role of iron is essential but not completely clarified. This Special Issue has the aim to summarize the state-of-the-art, and the latest findings published in the iron field, as well as to elucidate future directions.




Iron Chelation Therapy


Book Description

Within the last few years, iron research has yielded exciting new insights into the understanding of normal iron homeostasis. Such development, and the evolution of improved strategies of Iron Chelating Therapy require better understanding of the pathophysiology of iron toxicity and the mechanism of action of iron chelating drugs. The timeliness of the present volume is underlined by several significant developments in recent years. New insights have been gained into the molecular basis of aberrant iron handling in hereditary disorders and the pathophysiology of iron overload. This volume highlights the impact of long term Iron Celating Therapy using deferoxamine or the new, but controversial oral iron chelator deferiprone based on experience gained by multicenter trails, with special emphasis on survival, morbidity and drug toxicity; it reviews the development of the new and improved orally effective chelators suitable for clinical use in the near future and examines novel strategies of iron chelating treatment for the control of cell proliferation in malignant disease or malaria.




Restless Legs Syndrome/Willis Ekbom Disease


Book Description

Due to the fact that Restless Legs Syndrome/Willis-Ekbom Disease is usually a chronic condition, this book aims to provide physicians with the necessary tools for the long-term management of patients with RLS. The first part of the book addresses the various comorbidities and long-term consequences of RLS on life quality, sleep, cognitive, psychiatric and cardiovascular systems, while the second part focuses on the management of long-term treatment and the drug-induced complications in primary RLS and in special populations. Written by experts in the field, this practical resource offers a high-quality, long-term management of RLS for neurologists, sleep clinicians, pulmonologists and other healthcare professionals.




Prevention of Micronutrient Deficiencies


Book Description

Micronutrient malnutrition affects approximately 2 billion people worldwide. The adverse effects of micronutrient deficiencies are profound and include premature death, poor health, blindness, growth stunting, mental retardation, learning disabilities, and low work capacity. Preventing Micronutrient Deficiencies provides a conceptual framework based on past experience that will allow funders to tailor programs to existing regional/country capabilities and to incorporate within these programs the capacity to address multiple strategies (i.e., supplementation/fortification/food-based approaches/public health measures) and multiple micronutrient deficiencies. The book does not offer recommendations on how to alleviate specific micronutrient deficienciesâ€"such recommendations are already available through the publications of diverse organizations, including the U.S. Agency for International Development, the Micronutrient Initiative, World Bank, United Nations Childrens' Fund, and the World Health Organization. Instead, this volume examines key elements in the design and implementation of micronutrient interventions, including such issues as: The importance of iron, vitamin A, and iodine to health. Populations at risk for micronutrient deficiency. Options for successful interventions and their cost. The feasibility of involving societal sectors in the planning and implementation of interventions. Characteristics of successful interventions. The book also contains three in-depth background papers that address the prevention of deficiencies of iron, vitamin A, and iodine.