Non-Traditional Stable Isotopes


Book Description

The development of multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) makes it possible to precisely measure non-traditional stable isotopes. This volume reviews the current status of non-traditional isotope geochemistry from analytical, theoretical, and experimental approaches to analysis of natural samples. In particular, important applications to cosmochemistry, high-temperature geochemistry, low-temperature geochemistry, and geobiology are discussed. This volume provides the most comprehensive review on non-traditional isotope geochemistry for students and researchers who are interested in both the theory and applications of non-traditional stable isotope geochemistry.




Analytical Geomicrobiology


Book Description

A comprehensive handbook outlining state-of-the-art analytical techniques used in geomicrobiology, for advanced students, researchers and professional scientists.




Planetary Astrobiology


Book Description

Are we alone in the universe? How did life arise on our planet? How do we search for life beyond Earth? These profound questions excite and intrigue broad cross sections of science and society. Answering these questions is the province of the emerging, strongly interdisciplinary field of astrobiology. Life is inextricably tied to the formation, chemistry, and evolution of its host world, and multidisciplinary studies of solar system worlds can provide key insights into processes that govern planetary habitability, informing the search for life in our solar system and beyond. Planetary Astrobiology brings together current knowledge across astronomy, biology, geology, physics, chemistry, and related fields, and considers the synergies between studies of solar systems and exoplanets to identify the path needed to advance the exploration of these profound questions. Planetary Astrobiology represents the combined efforts of more than seventy-five international experts consolidated into twenty chapters and provides an accessible, interdisciplinary gateway for new students and seasoned researchers who wish to learn more about this expanding field. Readers are brought to the frontiers of knowledge in astrobiology via results from the exploration of our own solar system and exoplanetary systems. The overarching goal of Planetary Astrobiology is to enhance and broaden the development of an interdisciplinary approach across the astrobiology, planetary science, and exoplanet communities, enabling a new era of comparative planetology that encompasses conditions and processes for the emergence, evolution, and detection of life.




Iron Geochemistry: An Isotopic Perspective


Book Description

This book provides a comprehensive summary of research to date in the field of stable iron isotope geochemistry. Since research began in this field 20 years ago, the field has grown to become one of the major research fields in "non-traditional" stable isotope geochemistry. This book reviews all aspects of the field, from low-temperature to high-temperature processes, biological processes, and cosmochemical processes. It provides a detailed history and state-of-the art summary about analytical methods to determine Fe-isotope ratios and discusses analytical and sample prospects.




Encyclopedia of Geochemistry


Book Description

The Encyclopedia is a complete and authoritative reference work for this rapidly evolving field. Over 200 international scientists, each experts in their specialties, have written over 330 separate topics on different aspects of geochemistry including geochemical thermodynamics and kinetics, isotope and organic geochemistry, meteorites and cosmochemistry, the carbon cycle and climate, trace elements, geochemistry of high and low temperature processes, and ore deposition, to name just a few. The geochemical behavior of the elements is described as is the state of the art in analytical geochemistry. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to the essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and citation indices are comprehensive and extensive. Geochemistry applies chemical techniques and approaches to understanding the Earth and how it works. It touches upon almost every aspect of earth science, ranging from applied topics such as the search for energy and mineral resources, environmental pollution, and climate change to more basic questions such as the Earth’s origin and composition, the origin and evolution of life, rock weathering and metamorphism, and the pattern of ocean and mantle circulation. Geochemistry allows us to assign absolute ages to events in Earth’s history, to trace the flow of ocean water both now and in the past, trace sediments into subduction zones and arc volcanoes, and trace petroleum to its source rock and ultimately the environment in which it formed. The earliest of evidence of life is chemical and isotopic traces, not fossils, preserved in rocks. Geochemistry has allowed us to unravel the history of the ice ages and thereby deduce their cause. Geochemistry allows us to determine the swings in Earth’s surface temperatures during the ice ages, determine the temperatures and pressures at which rocks have been metamorphosed, and the rates at which ancient magma chambers cooled and crystallized. The field has grown rapidly more sophisticated, in both analytical techniques that can determine elemental concentrations or isotope ratios with exquisite precision and in computational modeling on scales ranging from atomic to planetary.




Sediments, Diagenesis, and Sedimentary Rocks


Book Description

This volume covers the formation and biogeochemistry of a variety of important sediment types from their initial formation through their conversion (diagenesis) to sedimentary rocks. The volume deals with the chemical, mineralogical, and isotopic properties of sediments and sedimentary rocks and their use in interpreting the environment of formation and subsequent events in the history of sediments, and the nature of the ocean-atmosphere system through geological time. Reprinted individual volume from the acclaimed Treatise on Geochemistry, (10 Volume Set, ISBN 0-08-043751-6, published in 2003). - Comprehensive and authoritative scope and focus - Reviews from renowned scientists across a range of subjects, providing both overviews and new data, supplemented by extensive bibliographies - Extensive illustrations and examples from the field




Stable Isotope Geochemistry


Book Description

Stable Isotope Geochemistry is an introduction to the use of stable isotopes in the fields of geoscience. It is subdivided into three parts: - theoretical and experimental principles; - fractionation mechanisms of light elements; - the natural variations of geologically important reservoirs. In this updated 4th edition many of the chapters have been expanded, especially those on techniques and environmental aspects. The main focus is on recent results and new developments. For students and scientists alike the book will be a primary reference with regard to how and where stable isotopes can be used to solve geological problems.




Atmospheric Evolution on Inhabited and Lifeless Worlds


Book Description

A comprehensive and authoritative text on the formation and evolution of planetary atmospheres, for graduate-level students and researchers.




Chemical Biomarkers in Aquatic Ecosystems


Book Description

This textbook provides a unique and thorough look at the application of chemical biomarkers to aquatic ecosystems. Defining a chemical biomarker as a compound that can be linked to particular sources of organic matter identified in the sediment record, the book indicates that the application of these biomarkers for an understanding of aquatic ecosystems consists of a biogeochemical approach that has been quite successful but underused. This book offers a wide-ranging guide to the broad diversity of these chemical biomarkers, is the first to be structured around the compounds themselves, and examines them in a connected and comprehensive way. This timely book is appropriate for advanced undergraduate and graduate students seeking training in this area; researchers in biochemistry, organic geochemistry, and biogeochemistry; researchers working on aspects of organic cycling in aquatic ecosystems; and paleoceanographers, petroleum geologists, and ecologists. Provides a guide to the broad diversity of chemical biomarkers in aquatic environments The first textbook to be structured around the compounds themselves Describes the structure, biochemical synthesis, analysis, and reactivity of each class of biomarkers Offers a selection of relevant applications to aquatic systems, including lakes, rivers, estuaries, oceans, and paleoenvironments Demonstrates the utility of using organic molecules as tracers of processes occurring in aquatic ecosystems, both modern and ancient




The Iron Speciation Paleoredox Proxy


Book Description

In one form or another, iron speciation has had a long history as a paleoredox proxy. The technique has been refined considerably over the years, and the most recent scheme is unique in its potential to distinguish three major oceanic redox states - oxygenated, ferruginous and euxinic. This Element covers the theory behind the proxy, methods involved in applying the technique, and potential complications in interpreting Fe speciation data. A series of case studies are also provided, which highlight how more advanced consideration of the data, often in concert with other techniques, can provide unprecedented insight into the redox state of ancient oceans.