Iron Nanomaterials for Water and Soil Treatment


Book Description

Nanotechnology has a great potential for providing efficient, cost-effective, and environmentally acceptable solutions to face the increasing requirements on quality and quantity of fresh water for industrial, agricultural, or human use. Iron nanomaterials, either zerovalent iron (nZVI) or iron oxides (nFeOx), present key physicochemical properties that make them particularly attractive as contaminant removal agents for water and soil cleaning. The large surface area of these nanoparticles imparts high sorption capacity to them, along with the ability to be functionalized for the enhancement of their affinity and selectivity. However, one of the most important properties is the outstanding capacity to act as redox-active materials, transforming the pollutants to less noxious chemical species by either oxidation or reduction, such as reduction of Cr(VI) to Cr(III) and dehalogenation of hydrocarbons. This book focuses on the methods of preparation of iron nanomaterials that can carry out contaminant removal processes and the use of these nanoparticles for cleaning waters and soils. It carefully explains the different aspects of the synthesis and characterization of iron nanoparticles and methods to evaluate their ability to remove contaminants, along with practical deployment. It overviews the advantages and disadvantages of using iron-based nanomaterials and presents a vision for the future of this nanotechnology. While this is an easy-to-understand book for beginners, it provides the latest updates to experts of this field. It also opens a multidisciplinary scope for engineers, scientists, and undergraduate and postgraduate students. Although there are a number of books published on the subject of nanomaterials, not too many of them are especially devoted to iron materials, which are rather of low cost, are nontoxic, and can be prepared easily and envisaged to be used in a large variety of applications. The literature has scarce reviews on preparation of iron nanoparticles from natural sources and lacks emphasis on the different processes, such as adsorption, redox pathways, and ionic exchange, taking place in the removal of different pollutants. Reports and mechanisms on soil treatment are not commonly found in the literature. This book opens a multidisciplinary scope for engineers and scientists and also for undergraduate or postgraduate students.




Advanced Nano-Bio Technologies for Water and Soil Treatment


Book Description

We are proposing this comprehensive volume aimed at bridging and bonding of the theory and practical experiences for the elimination of a broad range of pollutants from various types of water and soil utilizing innovative nanotechnologies, biotechnologies and their possible combinations. Nowadays, a broad range of contaminants are emerging from the industry (and also representing old ecological burdens). Accidents and improper wastewater treatment requires a fast, efficient and cost-effective approach. Therefore, several innovative technologies of water and soil treatments have been invented and suggested in a number of published papers. Out of these, some nanotechnologies and biotechnologies (and possibly also their mutual combinations) turned out to be promising for practical utilization – i.e., based on both extensive laboratory testing and pilot-scale verification. With respect to the diverse character of targeted pollutants, the key technologies covered in this book will include oxidation, reduction, sorption and/or biological degradation. In relation to innovative technologies and new emerging pollutants mentioned in this proposed book, an important part will also cover the ecotoxicity of selected pollutants and novel nanomaterials used for remediation. Thus, this work will consist of 8 sections/chapters with a technical appendix as an important part of the book, where some technical details and standardized protocols will be clearly presented for their possible implementation at different contaminated sites. Although many previously published papers and books (or book chapters) are devoted to some aspects of nano-/biotechnologies, here we will bring a first complete and comprehensive treatise on the latest progress in innovative technologies with a clear demonstration of the applicability of particular methods based on results of the authors from pilot tests (i.e., based on the data collected within several applied projects, mainly national project “Environmentally friendly nanotechnologies and biotechnologies in water and soil treatment” of the Technology Agency of the Czech Republic, and 7FP project NANOREM: “Taking Nanotechnological Remediation Processes from Lab Scale to End User Applications for the Restoration of a Clean Environment”). This multidisciplinary book will be suitable for a broad audience including environmental scientists, practitioners, policymakers and toxicologists (and of course graduate students of diverse fields – material science, chemistry, biology, geology, hydrogeology, engineering etc.).




Nano-Bioremediation for Water and Soil Treatment


Book Description

This new volume addresses the global concern of environmental pollution mediated by a variety of organic, inorganic, persistent, and nonpersistent pollutants, which have a substantial detrimental impact on the structural and functional aspects of ecosystems. The book presents some important and recent nanotechnological advances that provide significant potential for decontamination of many polluted sites. It first provides the introductory background of nanoremediation and then delves into applications for the restoration of environmental sites that have been contaminated with a diverse range of pollutants, such as heavy metal, pesticides, and dyes in soil and water. This volume improves our knowledge of nanotechnology-based remediation to make it less hazardous and reusable. It provides valuable information on the decontamination of the soil and water resources.




Soil and Groundwater Remediation Technologies


Book Description

This book offers various soil and water treatment technologies due to increasing global soil and water pollution. In many countries, the management of contaminated land has matured, and it is developing in many others. Topics covered include chemical and ecological risk assessment of contaminated sites; phytomanagement of contaminants; arsenic removal; selection and technology diffusion; technologies and socio-environmental management; post-remediation long-term management; soil and groundwater laws and regulations; and trace element regulation limits in soil. Future prospects of soil and groundwater remediation are critically discussed in this book. Hence, readers will learn to understand the future prospects of soil and groundwater contaminants and remediation measures. Key Features: Discusses conventional and novel aspects of soil and groundwater remediation technologies Includes new monitoring/sensing technologies for soil and groundwater pollution Features a case study of remediation of contaminated sites in the old, industrial, Ruhr area in Germany Highlights soil washing, soil flushing, and stabilization/solidification Presents information on emerging contaminants that exhibit new challenges This book is designed for undergraduate and graduate courses and can be used as a handbook for researchers, policy makers, and local governmental institutes. Soil and Groundwater Remediation Technologies: A Practical Guide is written by a team of leading global experts in the field.




Nanoscale Zerovalent Iron Particles for Environmental Restoration


Book Description

This is the first complete edited volume devoted to providing comprehensive and state-of-the art descriptions of science principles and pilot- and field-scaled engineering applications of nanoscale zerovalent iron particles (NZVI) for soil and groundwater remediation. Although several books on environmental nanotechnology contain chapters of NZVI for environmental remediation (Wiesner and Bottero (2007); Geiger and Carvalho-Knighton (2009); Diallo et al. (2009); Ram et al. (2011)), none of them include a comprehensive treatment of the fundamental and applied aspects of NZVI applications. Most devote a chapter or two discussing a contemporary aspect of NZVI. In addition, environmental nanotechnology has a broad audience including environmental engineers and scientists, geochemists, material scientists, physicists, chemists, biologists, ecologists and toxicologists. None of the current books contain enough background material for such multidisciplinary readers, making it difficult for a graduate student or even an experienced researcher or environmental remediation practitioner new to nanotechnology to catch up with the massive, undigested literature. This prohibits the reader from gaining a complete understanding of NZVI science and technology. In this volume, the sixteen chapters are based on more than two decades of laboratory research and development and field-scaled demonstrations of NZVI implementation. The authors of each chapter are leading researchers and/or practitioners in NZVI technology. This book aims to be an important resource for all levels of audiences, i.e. graduate students, experienced environmental and nanotechnology researchers, and practitioners evaluating environmental remediation, as it is designed to involve everything from basic to advanced concepts.




Nanomaterials for the Detection and Removal of Wastewater Pollutants


Book Description

Nanomaterials for the Detection and Removal of Wastewater Pollutants assesses the role of nanotechnology and nanomaterials in improving both the detection and removal of inorganic and organic contaminants from wastewater that originates from municipal and industrial plants. The book covers how nanotechnology is being used to remove common contaminants, including dyes, chlorinated solvents, nitrites/nitrates, and emerging contaminants, such as pharmaceuticals, personal care products and pesticides. Sections cover nanofiltration, adsorption and remediation. Nanomaterial immobilization recovery is also addressed, along with the quantification of heat/mass transport limitations, sizing aspects and transport phenomena. Finally, regulatory aspects regarding contaminants and nanoparticles in the environment are covered. This book is an important resource for both materials scientists and environmental scientists looking to see how nanotechnology can play a role in making wastewater a less hazardous part of the global ecosystem. - Addresses the role of new nanotechnology-based solutions for the detection and removal of common and emerging contaminants - Discusses the environmental impact of nanoparticles used in wastewater contaminant detection and removal - Explores the major challenges for using nanomaterials to detect and remove contaminants from wastewater




Remediation of Heavy Metals


Book Description

The book presents recent remediation techniques for heavy metal contamination in wastewater, with a focus on recently-developed and sustainable materials such as metal oxides and their composites, two-dimensional materials, organic-inorganic ion exchange materials, nanomaterials, bagasse, and olive-oil waste chelating materials. Chapters also describe the analysis of heavy metals, membranes for water treatment, sources and impact of heavy metals and opportunities and challenges in heavy metal remediation.




Environmental Arsenic in a Changing World


Book Description

The Congress "Arsenic in the Environment" offers an international, multi- and interdisciplinary discussion platform for research and innovation aimed towards a holistic solution to the problem posed by the environmental toxin arsenic, with significant societal impact. The Congress has focused on cutting edge and breakthrough research in physical, chemical, toxicological, medical, agricultural and other specific issues on arsenic across a broader environmental realm. The Biennial Congress "Arsenic in the Environment" was first organized in Mexico City (As2006) followed by As2008 in Valencia (Spain), As2010 in Tainan (Chinese Taiwan), As2012 in Cairns (Australia), As2014 in Buenos Aires (Argentina) and As2016 in Stockholm (Sweden). The 7th International Congress As2018 was held July 1-6, 2018, in Beijing, P. R. China and was entitled Environmental Arsenic in a Changing World. The Congress addressed the broader context of arsenic research aligned on the following themes: Theme 1: Arsenic Behaviour in Changing Environmental Media Theme 2: Arsenic in a Changing Agricultural Ecosystem Theme 3: Health Impacts of Environmental Arsenic Theme 4: Technologies for Arsenic Immobilization and Clean Water Blueprints Theme 5: Sustainable Mitigation and Management Arsenic in drinking water (mainly groundwater) has emerged as an issue of global health concern. During last decade, the presence of arsenic in rice, possibly also other food of plant origins, has attained increasing attention. This is particularly true in the Asian countries, where the use of high arsenic groundwater as source of irrigation water and drinking water has been flagged as severe health concern. This has been accentuated by elevating arsenic concentrations in deep groundwater recharged from shallow high arsenic groundwater, which may have further detrimental effects on public health. Notably, China has been in the forefront of research on arsenic biogeochemical cycling, health effects of arsenic, technologies for arsenic removal, and sustainable mitigation measures. The Congress has attracted professionals involved in different segments of interdisciplinary research on arsenic in an open forum, and strengthened relations between academia, research institutions, government and non-governmental agencies, industries, and civil society organizations to share an optimal ambience for exchange of knowledge.




Nanomaterials for Soil Remediation


Book Description

Nanomaterials for Soil Remediation provides a comprehensive description on basic knowledge and current research progress in the field of soil treatment using nanomaterials. Soil pollution refers to the presence of toxic chemicals in soil. Compared with air and water remediations, soil remediation is technically more challenging due to its complex composition. The synergy between engineering and nanotechnology has resulted in rapid developments in soil remediation. Nanomaterials could offer new routes to address challenging and pressing issues facing soil pollution. This book aims to explore how nanomaterials are used to cleanse polluted soils (organic compounds and heavy metal-contaminated soils) through various nanomaterials-based techniques (chemical/physical/biological techniques and their integrations). - Highlights how nanotechnology is being used to more accurately measure soil pollution levels - Discusses how the properties of nanomaterials are being used to make more efficient soil remediation techniques and products - Assesses the practical and regulatory challenges of using different nanomaterial-based products for soil repair




Nanomaterials Applications for Environmental Matrices


Book Description

Nanomaterials Applications for Environmental Matrices: Water, Soil and Air takes a highly interdisciplinary approach in evaluating the use of a range of nanomaterials for various environmental applications, focusing, in particular, on their use in soil remediation, in improving water cleanliness, and in improving air quality. The book will not only help both materials scientists and environmental scientists understand the role played by nanomaterials in achieving these goals, but also give them practical ways they can be used to this end. - Brings together the various applications and experimental aspects of nanoscience in the fields of chemistry, biology, environmental science and physics - Maps the relationship between synthesis, properties and environmental interactions of nanomaterials, enabling greater understanding - Describes new application opportunities for using nanomaterials in pollution trace detection and environmental improvement