Irradiation Performance of U-Mo Alloy Based 'Monolithic' Plate-Type Fuel - Design Selection


Book Description

A down-selection process has been applied to the U-Mo fuel alloy based monolithic plate fuel design, supported by irradiation testing of small fuel plates containing various design parameters. The irradiation testing provided data on fuel performance issues such as swelling, fuel-cladding interaction (interdiffusion), blister formation at elevated temperatures, and fuel/cladding bond quality and effectiveness. U-10Mo (wt%) was selected as the fuel alloy of choice, accepting a somewhat lower uranium density for the benefits of phase stability. U-7Mo could be used, with a barrier, where the trade-off for uranium density is critical to nuclear performance. A zirconium foil barrier between fuel and cladding was chosen to provide a predictable, well-bonded, fuel-cladding interface, allowing little or no fuel-cladding interaction. The fuel plate testing conducted to inform this selection was based on the use of U-10Mo foils fabricated by hot co-rolling with a Zr foil. The foils were subsequently bonded to Al-6061 cladding by hot isostatic pressing or friction stir bonding.




Effects of the Shape of the Foil Corners on the Irradiation Performance of U10Mo Alloy Based Monolithic Mini-plates


Book Description

Monolithic plate-type fuel is a fuel form being developed for high performance research and test reactors to minimize the use of enriched material. These fuel elements are comprised of a high density, low enrichment, U-Mo alloy based fuel foil, sandwiched between Zirconium liners and encapsulated in Aluminum cladding. The use of a high density fuel in a foil form presents a number of fabrication and operational concerns, such as: foil centering, flatness of the foil, fuel thickness variation, geometrical tilting, foil corner shape etc. To benchmark this new design, effects of various geometrical and operational variables on irradiation performance have been evaluated. As a part of these series of sensitivity studies, the shape of the foil corners were studied. To understand the effects of the corner shapes of the foil on thermo-mechanical performance of the plates, a behavioral model was developed for a selected plate from RERTR-12 experiments (Plate L1P785). Both fabrication and irradiation processes were simulated. Once the thermo-mechanical behavior the plate is understood for the nominal case, the simulations were repeated for two additional corner shapes to observe the changes in temperature, displacement and stress-strain fields. The results from the fabrication simulations indicated that the foil corners do not alter the post-fabrication stress-strain magnitudes. Furthermore, the irradiation simulations revealed that post-fabrication stresses of the foil would be relieved very quickly in operation. While, foils with chamfered and filleted corners yielded stresses with comparable magnitudes, they are slightly lower in magnitudes, and provided a more favorable mechanical response compared with the foil with sharp corners.




Fuel Plate Failure Experiments and Analyses in Irradiated U-10Mo Alloy


Book Description

The Materials Management and Minimization (M3) Program intends to qualify a new high-density low-enriched-uranium (LEU) U--Mo monolithic fuel to enable conversion of six US high-performance research reactors (USHPRRs). This thesis presents the preliminary results and discussions related to post-irradiation blister anneal studies and fission product release scoping studies performed on U--Mo monolithic fuel plates. Blister anneal testing on irradiated fuel plates is a temperature-resolved failure-threshold measurement technique historically used to assess fuel plate stability under off-normal operating conditions. The effects of fuel composition, geometry, fission density, and irradiation conditions are presented herein as parameters that were investigated for their impact on blister-threshold temperatures. The fission-product-transport scoping study successfully characterized the release, transport and temperature-resolved deposition behavior of iodine and cesium. Two failure temperatures were evaluated: 600 and 1250°C. Testing was performed in the main hot cell at the Materials and Fuels Complex located at Idaho National Laboratory.




Irradiation of U-Mo Base Alloys


Book Description

A series of experiments was designed to assess the suitability of uranium-molybdenum alloys as high-temperature, high-burnup fuels for advanced sodium cooled reactors. Specimens with molybdenum contents between 3 and 10% were subjected to capsule irradiation tests in the Materials Testing Reactor, to burnups up to 10,000 Mwd/MTU at temperatures between 800 and 1500 deg F. The results indicated that molybdenum has a considerable effect in reducing the swelling due to irradiation. For example. 3% molybdemum reduces the swelling from 25%, for pure uranium. to 7% at approximates 3,000 Mwd/MTU at 1270 deg F. Further swelling resistance can be gained by increasing the molybdenum content, but the amount gained becomes successively smaller. At higher irradiation levels, the amount of swelling rapidly becomes greater, and larger amounts of molybdenum are required to provide similar resistance. A limit of 7% swelling, at 900 deg F and an irradiation of 7,230 Mwd/ MTU, requires the use of 10% Nonemolybdenum in the alloy. The burnup rates were in the range of 2.0 to 4.0 x 10p13s fissiom/cc-sec. Small ternary additions of silicon and aluminum were shown to have a noticeable effect in reducing swelling when added to a U-3% Mo alloy base. Under the conditions of the present experiment, 0.26% silicon or 0.38% aluminum were equivalent to 1 to 1 1/2% molybdenum. The Advanced Sodium Cooled Reactor requires a fuel capable of being irradiated to 20,000 Mwd/MTU at temperatures up to 1500 deg C in metal fuel, or equivalent in ceramic fuel. It is concluded that even the highest molybdenum contents considered did not produce a fuel capable of operating satisfactorily under these conditions. The alloys would be useful, however, for less exacting conditions. The U-3% Mo alloy is capable of use up to 3,000 Mwd/MTU at temperatures of 1300 deg F before swelling becomes excessive. The addition of silicon and aluminum would increase this limit to at least 3,000 Mwd/MTU, and possibly more if the







Microstructural Analysis of Irradiated U-Mo Fuel Plates


Book Description

Microstructural characterization of irradiated dispersion and monolithic RERTR fuel plates using scanning electron microscopy (SEM) is being performed in the Electron Microscopy Laboratory at the Idaho National Laboratory. The SEM analysis of samples from U-Mo dispersion fuel plates focuses primarily on the behavior of the Si that has been added to the Al matrix to improve the irradiation performance of the fuel plate and on the overall behavior of fission gases (e.g., Xe and Kr) that develop as bubbles in the fuel microstructure. For monolithic fuel plates, microstructural features of interest, include those found in the U-Mo foil and at the U-Mo/Zr and Zr/6061 Al cladding interfaces. For both dispersion and monolithic fuel plates, samples have been produced using an SEM equipped with a Focused Ion Beam (FIB). These samples are of very high quality and can be used to uncover some very unique microstructural features that are typically not observed when characterizing samples produced using more conventional techniques. Overall, for the dispersion fuel plates with matrices that contained Si, narrower fuel/matrix interaction layers are typically observed compared to the fuel plates with pure Al matrix, and for the monolithic fuel plates microstructural features have been observed in the U-10Mo foil that are similar to what have been observed in the fuel particles found in U-Mo dispersion fuels. Most recently, more prototypic monolithic fuel samples have been characterized and this paper describes the microstructures that have been observed in these samples.




Characterization of the Microstructure of Irradiated U-Mo Dispersion Fuel with a Matrix that Contains Si


Book Description

RERTR U-Mo dispersion fuel plates are being developed for application in research reactors throughout the world. Of particular interest is the irradiation performance of U-Mo dispersion fuels with Si added to the Al matrix. Si is added to improve the performance of U-Mo dispersion fuels. Microstructural examinations have been performed on fuel plates with Al-2Si matrix after irradiation to around 50% LEU burnup. Si-rich layers were observed in many areas around the various U-7Mo fuel particles. In one local area of one of the samples, where the Si-rich layer had developed into a layer devoid of Si, relatively large fission gas bubbles were observed in the interaction phase. There may be a connection between the growth of these bubbles and the amount of Si present in the interaction layer. Overall, it was found that having Si-rich layers around the fuel particles after fuel plate fabrication positively impacted the overall performance of the fuel plate.




U-Mo Foil/Cladding Interactions in Friction Stir Welded Monolithic RERTR Fuel Plates


Book Description

Interaction between U-Mo fuel and Al has proven to dramatically impact the overall irradiation performance of RERTR dispersion fuels. It is of interest to better understand how similar interactions may affect the performance of monolithic fuel plates, where a uranium alloy fuel is sandwiched between aluminum alloy cladding. The monolithic fuel plate removes the fuel matrix entirely, which reduces the total surface area of the fuel that is available to react with the aluminum and moves the interface between the fuel and cladding to a colder region of the fuel plate. One of the major fabrication techniques for producing monolithic fuel plates is friction stir welding. This paper will discuss the interactions that can occur between the U-Mo foil and 6061 Al cladding when applying this fabrication technique. It has been determined that the time at high temperatures should be limited as much as is possible during fabrication or any post-fabrication treatment to reduce as much as possible the interactions between the foil and cladding. Without careful control of the fabrication process, significant interaction between the U-Mo foil and Al alloy cladding can result. The reaction layers produced from such interactions can exhibit notably different morphologies vis-à-vis those typically observed for dispersion fuels.




Results of Recent Microstructural Characterization of Irradiated U-Mo Dispersion Fuels with Al Alloy Matrices that Contain Si


Book Description

RERTR U-Mo dispersion fuel plates are being developed for application in research reactors throughout the world. Of particular interest is the irradiation performance of U-Mo dispersion fuels with Si added to the Al matrix. Si is added to improve the performance of U-Mo dispersion fuels. Microstructural examinations have been performed on fuel plates with either Al-0.2Si or 4043 Al (~4.8% Si) alloy matrix in the as-fabricated and/or as-irradiated condition using optical metallography and/or scanning electron microscopy. Fuel plates with either matrix can have Si-rich layers around the U-7Mo particles after fabrication, and during irradiation these layers were observed to grow in thickness and to become Si-deficient in some areas of the fuel plates. For the fuel plates with 4043 Al, this was observed in fuel plate areas that were exposed to very aggressive irradiation conditions.




Nuclear Material Performance


Book Description

Assessing and improving nuclear material performance is a crucial subject for the sustainability of the nuclear energy and radioactive isotope supplies. This book aims to present research efforts used to identify nuclear materials performances in different areas. The contributions of esteemed international experts have covered important research aspects in fission and fusion technologies and naturally occurring radioactive materials management. The authors introduced current and anticipated trends toward better performances and mitigating challenges for commercial application of innovative technologies, biological remediation of mine effluents, nuclear fuel performance in power and research fission reactors, gamma ray spectrometer calibration, and recent advances in understanding the performance of tungsten composite in fusion reactor environment.