Irregularities of Partitions


Book Description

The problem of uniform distribution of sequences initiated by Hardy, Little wood and Weyl in the 1910's has now become an important part of number theory. This is also true, in relation to combinatorics, of what is called Ramsey theory, a theory of about the same age going back to Schur. Both concern the distribution of sequences of elements in certain collection of subsets. But it was not known until quite recently that the two are closely interweaving bear ing fruits for both. At the same time other fields of mathematics, such as ergodic theory, geometry, information theory, algorithm theory etc. have also joined in. (See the survey articles: V. T. S6s: Irregularities of partitions, Lec ture Notes Series 82, London Math. Soc. , Surveys in Combinatorics, 1983, or J. Beck: Irregularities of distributions and combinatorics, Lecture Notes Series 103, London Math. Soc. , Surveys in Combinatorics, 1985. ) The meeting held at Fertod, Hungary from the 7th to 11th of July, 1986 was to emphasize this development by bringing together a few people working on different aspects of this circle of problems. Although combinatorics formed the biggest contingent (see papers 2, 3, 6, 7, 13) some number theoretic and analytic aspects (see papers 4, 10, 11, 14) generalization of both (5, 8, 9, 12) as well as irregularities of distribution in the geometric theory of numbers (1), the most important instrument in bringing about the above combination of ideas are also represented.







Parallel Algorithms for Irregularly Structured Problems


Book Description

This book constitutes the refereed proceedings of the Third International Workshop on Parallel Algorithms for Irregularly Structured Problems, IRREGULAR '96, held in Santa Barbara, California, in August 1996. The volume presents 28 revised full papers selected from 51 submissions; also included are one full invited paper by Torben Hagerup and abstracts of four other invited talks. The papers are organized in topical sections on sparse matrix problems, partitioning and domain composition, irregular applications, communication and synchronization, systems support, and mapping and load balancing.




Rectilinear Partitioning of Irregular Data Parallel Computations


Book Description

Abstract: "This paper describes new mapping algorithms for domain-oriented data-parallel computations, where the workload is distributed irregularly throughout the domain, but exhibits localized communication patterns. We consider the problem of partitioning the domain for parallel processing in such a way that the workload on the most heavily loaded processor is minimized, subject to the constraint that the partition be perfectly rectilinear. Rectilinear partitions are useful on architectures that have a fast local mesh network and a relatively slower global network; these partitions heuristically attempt to maximize the fraction of communication carried by the local network. This paper provides an improved algorithm for finding the optimal partition in one dimension, new algorithms for partitioning in two dimensions, and shows that optimal partitioning in three dimensions is NP-complete. We discuss our application of these algorithms to real problems."




Time In Geographic Information Systems


Book Description

A study into the consideration of the temporal dimension of computerized spatial data handling using GIS. The book describes the use of historical and time-variable data as explicit components of the modelling process.







An Irregular Mind


Book Description

Szemerédi's influence on today's mathematics, especially in combinatorics, additive number theory, and theoretical computer science, is enormous. This volume is a celebration of Szemerédi's achievements and personality, on the occasion of his seventieth birthday. It exemplifies his extraordinary vision and unique way of thinking. A number of colleagues and friends, all top authorities in their fields, have contributed their latest research papers to this volume. The topics include extension and applications of the regularity lemma, the existence of k-term arithmetic progressions in various subsets of the integers, extremal problems in hypergraphs theory, and random graphs, all of them beautiful, Szemerédi type mathematics. It also contains published accounts of the first two, very original and highly successful Polymath projects, one led by Tim Gowers and the other by Terry Tao.




The Finite Element Method Set


Book Description

The sixth editions of these seminal books deliver the most up to date and comprehensive reference yet on the finite element method for all engineers and mathematicians. Renowned for their scope, range and authority, the new editions have been significantly developed in terms of both contents and scope. Each book is now complete in its own right and provides self-contained reference; used together they provide a formidable resource covering the theory and the application of the universally used FEM. Written by the leading professors in their fields, the three books cover the basis of the method, its application to solid mechanics and to fluid dynamics.* This is THE classic finite element method set, by two the subject's leading authors * FEM is a constantly developing subject, and any professional or student of engineering involved in understanding the computational modelling of physical systems will inevitably use the techniques in these books * Fully up-to-date; ideal for teaching and reference







Deformations of Mathematical Structures II


Book Description

This volume presents a collection of papers on geometric structures in the context of Hurwitz-type structures and applications to surface physics. The first part of this volume concentrates on the analysis of geometric structures. Topics covered are: Clifford structures, Hurwitz pair structures, Riemannian or Hermitian manifolds, Dirac and Breit operators, Penrose-type and Kaluza--Klein-type structures. The second part contains a study of surface physics structures, in particular boundary conditions, broken symmetry and surface decorations, as well as nonlinear solutions and dynamical properties: a near surface region. For mathematicians and mathematical physicists interested in the applications of mathematical structures.