Irrigation Water Salinity and Crop Production


Book Description

This is reference sheet 9.10 in the Farm Water Quality Planning series. All irrigation water contains dissolved mineral salts, and these can have a profound effect on crop performance. This publication helps you understand the basics of this relationship.







Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques


Book Description

This open access book is an outcome of the collaboration between the Soil and Water Management & Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria, and Dr. Shabbir A Shahid, Senior Salinity Management Expert, Freelancer based in United Arab Emirates.The objective of this book is to develop protocols for salinity and sodicity assessment and develop mitigation and adaptation measures to use saline and sodic soils sustainably. The focus is on important issues related to salinity and sodicity and to describe these in an easy and user friendly way. The information has been compiled from the latest published literature and from the authors’ publications specific to the subject matter. The book consists of six chapters. Chapter 1 introduces the terms salinity and sodicity and describes various salinity classification systems commonly used around the world. Chapter 2 reviews global distribution of salinization and socioeconomic aspects related to salinity and crop production. Chapters 3 covers comprehensively salinity and sodicity adaptation and mitigation options including physical, chemical, hydrological and biological methods. Chapter 4 discusses the efforts that have been made to demonstrate the development of soil salinity zones under different irrigation systems. Chapter 5 discusses the quality of irrigation water, boron toxicity and relative tolerance to boron, the effects of chlorides on crops. Chapter 6 introduces the role of nuclear techniques in saline agriculture.




Water Quality for Agriculture


Book Description

Richtlijnen voor de werker in het veld om problemen te ondervangen ten aanzien van de waterkwaliteit voor irrigatie-doeleinden. Tenslotte worden praktijkervaringen uit diverse gebieden vermeld




Biosalinity in Action: Bioproduction with Saline Water


Book Description

Historically, scientists and laymen have regarded salinity as a hazar dous, detrimental phenomenon. This negative view was a principal reason for the lack of agricultural development of most arid and semi arid zones of the world where the major sources of water for biological production are saline. The late Hugo Boyko was probably the first scientist in recent times to challenge this commonly held, pessimistic view of salinity. His research in Israel indicated that many plants can be irrigated with saline water, even at seawater strength, if they are in sandy soil - a technique that could open much barren land to agriculture. This new, even radical, approach to salinity was clearly enunciated in the book he edited and most appropriately entitled 'Salinity and Aridity: New Approaches to Old Problems' (1966). A decade later, three members of the United States National Science Foundation (NSF), Lewis Mayfield, James Aller and Oskar Zaborsky, formulated the 'Biosaline Concept'; namely, that poor soils, high solar insolation and saline water, which prevail in arid lands, should be viewed as useful resources rather than as disadvantages, and that these resources can be used for non-traditional production of food, fuels and chemicals. The First International Workshop on Biosaline Research was con vened at Kiawah Island, South Carolina, in 1977 by A. San Pietro.




Towards the Rational Use of High Salinity Tolerant Plants


Book Description

The Symposium on high salinity tolerant plants, held at the University of Al Ain in December 1990, dealt primarily with plants tolerating salinity levels exceeding that of ocean water and which at the same time are promising for utilization in agriculture or forestry. These plants could be very useful for a country like the UAE where fresh water resources are very scarce and the groundwater available at some places is already very salty. More than 60 million woody trees/shrubs have been planted so far and more are planned for the inland plains underlain with brackish groundwater. These species were no solution for the widely barren shoreline of the UAE. Here mangrove species were of potential use, and one species, Avicennia Marina, occurs widely and has been successfully planted for about a decade. Converting the tree plantations into economically useful cropping systems is still a problem requiring much research and development. The book deals in several sections with conventional irrigation systems using marginal water. The species used in these systems are mostly hybrids of conventional crops. The irrigation systems, however, have similar problems as may be expected for irrigation with seawater. Papers show the participants' experiments in this area. The volume serves as a link between scientists working for the improvement of classical irrigation systems and those interested in the application of a new dimension of salinity levels for irrigation water.




Agricultural Drainage Water Management in Arid and Semi-arid Areas


Book Description

This publication contains guidelines to sustain irrigated agriculture and protect water resources from the negative impacts of agricultural drainage water disposal. Using case studies from Central Asia, Egypt, India, Pakistan and the US, this study highlights four broad groups of drainage water management options and provides information to enable assessment of their impact and contribution towards development goals and to facilitate the preparation of drainage water management plans and designs. The options are: water conservation, drainage water re-use, drainage water disposal and drainage water treatment. The full texts of the case studies can be found on the attached CD-ROM.




Handbook of Wastewater Reclamation and Reuse


Book Description

This comprehensive reference provides thorough coverage of water and wastewater reclamation and reuse. It begins with an introductory chapter covering the fundamentals, basic principles, and concepts. Next, drinking water and treated wastewater criteria, guidelines, and standards for the United States, Europe and the World Health Organization (WHO) are presented. Chapter 3 provides the physical, chemical, biological, and bacteriological characteristics, as well as the radioactive and rheological properties, of water and wastewater. The next chapter discusses the health aspects and removal treatment processes of microbial, chemical, and radiological constituents found in reclaimed wastewater. Chapter 5 discusses the various wastewater treatment processes and sludge treatment and disposal. Risk assessment is covered in chapter 6. The next three chapters cover the economics, monitoring (sampling and analysis), and legal aspects of wastewater reclamation and reuse. This practical handbook also presents real-world case studies, as well as sources of information for research, potential sources for research funds, and information on current research projects. Each chapter includes an introduction, end-of-chapter problems, and references, making this comprehensive text/reference useful to both students and professionals.




Salinity: Environment — Plants — Molecules


Book Description

In biology, the very big global and thevery small molecular issues currently appear to be in the limelight ofpublic interest and research funding policies. They are in danger of drifting apart from each other. They apply very coarse and very fine scaling, respectively, but coherence is lost when the various intermediate levels of different scales are neglected. Regarding SALINITY we are clearly dealing with a global problem, which due to progressing salinization of arable land is of vital interest for society. Explanations and basic understanding as well as solutions and remedies may finally lie at the molecular level. It is a general approach in science to look for understanding of any system under study at the next finer (or "lower") level of scaling. This in itself shows that we need a whole ladder of levels with increasingly finer steps from the global impact to the molecular bases of SALINITY relations. It is in this vein that the 22 chapters of this book aim at providing an integrated view of SALINITY.




Agricultural Salinity and Drainage


Book Description

This handbook has been developed to bridge the gap between the advanced salinity literature and practical information on salinity intended for lay audiences. A user-friendly resource for agricultural consultants and advisors, as well as for local, state and federal agricultural and water agency management staff. Includes thirty-eight chapters covering a broad spectrum of salinity and drainiage topics, written so as to be easily understood by anyone with a general agricultural background. Also includes appendices presented as a shorthand guide to assessing soil salinity and to determining the suitability of a given water for irrigation. Illustrated with 27 tables and 44 figures. One of a series of water management handbooks prepared by the UC Irrigation Program.