Isomonodromic Deformations and Frobenius Manifolds


Book Description

Based on a series of graduate lectures, this book provides an introduction to algebraic geometric methods in the theory of complex linear differential equations. Starting from basic notions in complex algebraic geometry, it develops some of the classical problems of linear differential equations. It ends with applications to recent research questions related to mirror symmetry. The fundamental tool used is that of a vector bundle with connection. The book includes complete proofs, and applications to recent research questions. Aimed at graduate students and researchers, the book assumes some familiarity with basic complex algebraic geometry.




Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces


Book Description

This is the first monograph dedicated to the systematic exposition of the whole variety of topics related to quantum cohomology. The subject first originated in theoretical physics (quantum string theory) and has continued to develop extensively over the last decade. The author's approach to quantum cohomology is based on the notion of the Frobenius manifold. The first part of the book is devoted to this notion and its extensive interconnections with algebraic formalism of operads, differential equations, perturbations, and geometry. In the second part of the book, the author describes the construction of quantum cohomology and reviews the algebraic geometry mechanisms involved in this construction (intersection and deformation theory of Deligne-Artin and Mumford stacks). Yuri Manin is currently the director of the Max-Planck-Institut für Mathematik in Bonn, Germany. He has authored and coauthored 10 monographs and almost 200 research articles in algebraic geometry, number theory, mathematical physics, history of culture, and psycholinguistics. Manin's books, such as Cubic Forms: Algebra, Geometry, and Arithmetic (1974), A Course in Mathematical Logic (1977), Gauge Field Theory and Complex Geometry (1988), Elementary Particles: Mathematics, Physics and Philosophy (1989, with I. Yu. Kobzarev), Topics in Non-commutative Geometry (1991), and Methods of Homological Algebra (1996, with S. I. Gelfand), secured for him solid recognition as an excellent expositor. Undoubtedly the present book will serve mathematicians for many years to come.




Complex Differential and Difference Equations


Book Description

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.




Frobenius Manifolds


Book Description

Quantum cohomology, the theory of Frobenius manifolds and the relations to integrable systems are flourishing areas since the early 90's. An activity was organized at the Max-Planck-Institute for Mathematics in Bonn, with the purpose of bringing together the main experts in these areas. This volume originates from this activity and presents the state of the art in the subject.




Isomonodromic Deformations and Applications in Physics


Book Description

The area of inverse scattering transform method or soliton theory has evolved over the past two decades in a vast variety of exciting new algebraic and analytic directions and has found numerous new applications. Methods and applications range from quantum group theory and exactly solvable statistical models to random matrices, random permutations, and number theory. The theory of isomonodromic deformations of systems of differential equations with rational coefficents, and mostnotably, the related apparatus of the Riemann-Hilbert problem, underlie the analytic side of this striking development. The contributions in this volume are based on lectures given by leading experts at the CRM workshop (Montreal, Canada). Included are both survey articles and more detailed expositionsrelating to the theory of isomonodromic deformations, the Riemann-Hilbert problem, and modern applications. The first part of the book represents the mathematical aspects of isomonodromic deformations; the second part deals mostly with the various appearances of isomonodromic deformations and Riemann-Hilbert methods in the theory of exactly solvable quantum field theory and statistical mechanical models, and related issues. The book elucidates for the first time in the current literature theimportant role that isomonodromic deformations play in the theory of integrable systems and their applications to physics.




Frobenius Manifolds and Moduli Spaces for Singularities


Book Description

This book presents the theory of Frobenius manifolds, as well as all the necessary tools and several applications.




Gauge Theory and Symplectic Geometry


Book Description

Gauge theory, symplectic geometry and symplectic topology are important areas at the crossroads of several mathematical disciplines. The present book, with expertly written surveys of recent developments in these areas, includes some of the first expository material of Seiberg-Witten theory, which has revolutionised the subjects since its introduction in late 1994. Topics covered include: introductions to Seiberg-Witten theory, to applications of the S-W theory to four-dimensional manifold topology, and to the classification of symplectic manifolds; an introduction to the theory of pseudo-holomorphic curves and to quantum cohomology; algebraically integrable Hamiltonian systems and moduli spaces; the stable topology of gauge theory, Morse-Floer theory; pseudo-convexity and its relations to symplectic geometry; generating functions; Frobenius manifolds and topological quantum field theory.




New Developments in Singularity Theory


Book Description

Singularities arise naturally in a huge number of different areas of mathematics and science. As a consequence, singularity theory lies at the crossroads of paths that connect many of the most important areas of applications of mathematics with some of its most abstract regions. The main goal in most problems of singularity theory is to understand the dependence of some objects of analysis, geometry, physics, or other science (functions, varieties, mappings, vector or tensor fields, differential equations, models, etc.) on parameters. The articles collected here can be grouped under three headings. (A) Singularities of real maps; (B) Singular complex variables; and (C) Singularities of homomorphic maps.




Integrability, Quantization, and Geometry: I. Integrable Systems


Book Description

This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.




Formal And Analytic Solutions Of Differential Equations


Book Description

The book provides the reader with an overview of the actual state of research in ordinary and partial differential equations in the complex domain. Topics include summability and asymptotic study of both ordinary and partial differential equations, and also q-difference and differential-difference equations. This book will be of interest to researchers and students who wish to expand their knowledge of these fields.With the latest results and research developments and contributions from experts in their field, Formal and Analytic Solutions of Differential Equations provides a valuable contribution to methods, techniques, different mathematical tools, and study calculations.