Issues in Artificial Intelligence, Robotics and Machine Learning: 2011 Edition


Book Description

Issues in Artificial Intelligence, Robotics and Machine Learning: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Artificial Intelligence, Robotics and Machine Learning. The editors have built Issues in Artificial Intelligence, Robotics and Machine Learning: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Artificial Intelligence, Robotics and Machine Learning in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Artificial Intelligence, Robotics and Machine Learning: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Issues in Artificial Intelligence, Robotics and Machine Learning: 2012 Edition


Book Description

Issues in Artificial Intelligence, Robotics and Machine Learning: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Pattern Analysis. The editors have built Issues in Artificial Intelligence, Robotics and Machine Learning: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Pattern Analysis in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Artificial Intelligence, Robotics and Machine Learning: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Issues in Artificial Intelligence, Robotics and Machine Learning: 2013 Edition


Book Description

Issues in Artificial Intelligence, Robotics and Machine Learning: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Expert Systems. The editors have built Issues in Artificial Intelligence, Robotics and Machine Learning: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Expert Systems in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Artificial Intelligence, Robotics and Machine Learning: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Algorithms and Law


Book Description

Exploring issues from big-data to robotics, this volume is the first to comprehensively examine the regulatory implications of AI technology.




Recent Advances in Robot Learning


Book Description

Recent Advances in Robot Learning contains seven papers on robot learning written by leading researchers in the field. As the selection of papers illustrates, the field of robot learning is both active and diverse. A variety of machine learning methods, ranging from inductive logic programming to reinforcement learning, is being applied to many subproblems in robot perception and control, often with objectives as diverse as parameter calibration and concept formulation. While no unified robot learning framework has yet emerged to cover the variety of problems and approaches described in these papers and other publications, a clear set of shared issues underlies many robot learning problems. Machine learning, when applied to robotics, is situated: it is embedded into a real-world system that tightly integrates perception, decision making and execution. Since robot learning involves decision making, there is an inherent active learning issue. Robotic domains are usually complex, yet the expense of using actual robotic hardware often prohibits the collection of large amounts of training data. Most robotic systems are real-time systems. Decisions must be made within critical or practical time constraints. These characteristics present challenges and constraints to the learning system. Since these characteristics are shared by other important real-world application domains, robotics is a highly attractive area for research on machine learning. On the other hand, machine learning is also highly attractive to robotics. There is a great variety of open problems in robotics that defy a static, hand-coded solution. Recent Advances in Robot Learning is an edited volume of peer-reviewed original research comprising seven invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 23, Numbers 2 and 3).




Artificial Intelligence for Robotics and Autonomous Systems Applications


Book Description

This book addresses many applications of artificial intelligence in robotics, namely AI using visual and motional input. Robotic technology has made significant contributions to daily living, industrial uses, and medicinal applications. Machine learning, in particular, is critical for intelligent robots or unmanned/autonomous systems such as UAVs, UGVs, UUVs, cooperative robots, and so on. Humans are distinguished from animals by capacities such as receiving visual information, adjusting to uncertain circumstances, and making decisions to take action in a complex system. Significant progress has been made in robotics toward human-like intelligence; yet, there are still numerous unresolved issues. Deep learning, reinforcement learning, real-time learning, swarm intelligence, and other developing approaches such as tiny-ML have been developed in recent decades and used in robotics. Artificial intelligence is being integrated into robots in order to develop advanced robotics capable of performing multiple tasks and learning new things with a better perception of the environment, allowing robots to perform critical tasks with human-like vision to detect or recognize various objects. Intelligent robots have been successfully constructed using machine learning and deep learning AI technology. Robotics performance is improving as higher quality, and more precise machine learning processes are used to train computer vision models to recognize different things and carry out operations correctly with the desired outcome. We believe that the increasing demands and challenges offered by real-world robotic applications encourage academic research in both artificial intelligence and robotics. The goal of this book is to bring together scientists, specialists, and engineers from around the world to present and share their most recent research findings and new ideas on artificial intelligence in robotics.




Toward Learning Robots


Book Description

The contributions in Toward Learning Robots address the question of how a robot can be designed to acquire autonomously whatever it needs to realize adequate behavior in a complex environment. In-depth discussions of issues, techniques, and experiments in machine learning focus on improving ease of programming and enhancing robustness in unpredictable and changing environments, given limitations of time and resources available to researchers. The authors show practical progress toward a useful set of abstractions and techniques to describe and automate various aspects of learning in autonomous systems. The close interaction of such a system with the world reveals opportunities for new architectures and learning scenarios and for grounding symbolic representations, though such thorny problems as noise, choice of language, abstraction level of representation, and operationality have to be faced head-on. Contents Introduction: Toward Learning Robots * Learning Reliable Manipulation Strategies without Initial Physical Models * Learning by an Autonomous Agent in the Pushing Domain * A Cost-Sensitive Machine Learning Method for the Approach and Recognize Task * A Robot Exploration and Mapping Strategy Based on a Semantic Hierarchy of Spatial Representations * Understanding Object Motion: Recognition, Learning and Spatiotemporal Reasoning * Learning How to Plan * Robo-Soar: An Integration of External Interaction, Planning, and Learning Using Soar * Foundations of Learning in Autonomous Agents * Prior Knowledge and Autonomous Learning




Bio-Inspired Artificial Intelligence


Book Description

A comprehensive introduction to new approaches in artificial intelligence and robotics that are inspired by self-organizing biological processes and structures. New approaches to artificial intelligence spring from the idea that intelligence emerges as much from cells, bodies, and societies as it does from evolution, development, and learning. Traditionally, artificial intelligence has been concerned with reproducing the abilities of human brains; newer approaches take inspiration from a wider range of biological structures that that are capable of autonomous self-organization. Examples of these new approaches include evolutionary computation and evolutionary electronics, artificial neural networks, immune systems, biorobotics, and swarm intelligence—to mention only a few. This book offers a comprehensive introduction to the emerging field of biologically inspired artificial intelligence that can be used as an upper-level text or as a reference for researchers. Each chapter presents computational approaches inspired by a different biological system; each begins with background information about the biological system and then proceeds to develop computational models that make use of biological concepts. The chapters cover evolutionary computation and electronics; cellular systems; neural systems, including neuromorphic engineering; developmental systems; immune systems; behavioral systems—including several approaches to robotics, including behavior-based, bio-mimetic, epigenetic, and evolutionary robots; and collective systems, including swarm robotics as well as cooperative and competitive co-evolving systems. Chapters end with a concluding overview and suggested reading.




The Cambridge Handbook of Artificial Intelligence


Book Description

An authoritative, up-to-date survey of the state of the art in artificial intelligence, written for non-specialists.




Human Compatible


Book Description

A leading artificial intelligence researcher lays out a new approach to AI that will enable people to coexist successfully with increasingly intelligent machines.