Handbook of Research on Science Education


Book Description

This state-of-the art research Handbook provides a comprehensive, coherent, current synthesis of the empirical and theoretical research concerning teaching and learning in science and lays down a foundation upon which future research can be built. The contributors, all leading experts in their research areas, represent the international and gender diversity that exists in the science education research community. As a whole, the Handbook of Research on Science Education demonstrates that science education is alive and well and illustrates its vitality. It is an essential resource for the entire science education community, including veteran and emerging researchers, university faculty, graduate students, practitioners in the schools, and science education professionals outside of universities. The National Association for Research in Science Teaching (NARST) endorses the Handbook of Research on Science Education as an important and valuable synthesis of the current knowledge in the field of science education by leading individuals in the field. For more information on NARST, please visit: http://www.narst.org/.




Education and Technology


Book Description

Includes: schooling and learning in an information society (the 3 great codes and the creation of human culture); learning and teaching in 2004: the BIG DIG; the future of teaching; year 2005: using technology to build communities of understanding; and public school teachers using machines in the next decade (spread of computers in schools: confusion over access, use, and innovation). Also: is there a Federal role? will promising visions become a reality? key issues for future visions of educational technology; technology and school reform: setting the context, and more.




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Educating One and All


Book Description

In the movement toward standards-based education, an important question stands out: How will this reform affect the 10% of school-aged children who have disabilities and thus qualify for special education? In Educating One and All, an expert committee addresses how to reconcile common learning for all students with individualized education for "one"â€"the unique student. The book makes recommendations to states and communities that have adopted standards-based reform and that seek policies and practices to make reform consistent with the requirements of special education. The committee explores the ideas, implementation issues, and legislative initiatives behind the tradition of special education for people with disabilities. It investigates the policy and practice implications of the current reform movement toward high educational standards for all students. Educating One and All examines the curricula and expected outcomes of standards-based education and the educational experience of students with disabilitiesâ€"and identifies points of alignment between the two areas. The volume documents the diverse population of students with disabilities and their school experiences. Because approaches to assessment and accountability are key to standards-based reforms, the committee analyzes how assessment systems currently address students with disabilities, including testing accommodations. The book addresses legal and resource implications, as well as parental participation in children's education.